![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbrne2 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
Ref | Expression |
---|---|
nbrne2 | ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4807 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
2 | 1 | biimpcd 239 | . . 3 ⊢ (𝐴𝑅𝐶 → (𝐴 = 𝐵 → 𝐵𝑅𝐶)) |
3 | 2 | necon3bd 2946 | . 2 ⊢ (𝐴𝑅𝐶 → (¬ 𝐵𝑅𝐶 → 𝐴 ≠ 𝐵)) |
4 | 3 | imp 444 | 1 ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ≠ wne 2932 class class class wbr 4804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 |
This theorem is referenced by: frfi 8372 hl2at 35212 2atjm 35252 atbtwn 35253 atbtwnexOLDN 35254 atbtwnex 35255 dalem21 35501 dalem23 35503 dalem27 35506 dalem54 35533 2llnma1b 35593 lhpexle1lem 35814 lhpexle3lem 35818 lhp2at0nle 35842 4atexlemunv 35873 4atexlemnclw 35877 4atexlemcnd 35879 cdlemc5 36003 cdleme0b 36020 cdleme0c 36021 cdleme0fN 36026 cdleme01N 36029 cdleme0ex2N 36032 cdleme3b 36037 cdleme3c 36038 cdleme3g 36042 cdleme3h 36043 cdleme7aa 36050 cdleme7b 36052 cdleme7c 36053 cdleme7d 36054 cdleme7e 36055 cdleme7ga 36056 cdleme11fN 36072 cdlemesner 36104 cdlemednpq 36107 cdleme19a 36111 cdleme19c 36113 cdleme21c 36135 cdleme21ct 36137 cdleme22cN 36150 cdleme22f2 36155 cdleme22g 36156 cdleme41sn3aw 36282 cdlemeg46rgv 36336 cdlemeg46req 36337 cdlemf1 36369 cdlemg27b 36504 cdlemg33b0 36509 cdlemg33c0 36510 cdlemh 36625 cdlemk14 36662 dia2dimlem1 36873 |
Copyright terms: Public domain | W3C validator |