![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbgrsym | Structured version Visualization version GIF version |
Description: In a graph, the neighborhood relation is symmetric: a vertex 𝑁 in a graph 𝐺 is a neighbor of a second vertex 𝐾 iff the second vertex 𝐾 is a neighbor of the first vertex 𝑁. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 27-Oct-2020.) (Revised by AV, 12-Feb-2022.) |
Ref | Expression |
---|---|
nbgrsym | ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ 𝐾 ∈ (𝐺 NeighbVtx 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 465 | . . 3 ⊢ ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐾 ∈ (Vtx‘𝐺)) ↔ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) | |
2 | necom 2876 | . . 3 ⊢ (𝑁 ≠ 𝐾 ↔ 𝐾 ≠ 𝑁) | |
3 | prcom 4299 | . . . . 5 ⊢ {𝐾, 𝑁} = {𝑁, 𝐾} | |
4 | 3 | sseq1i 3662 | . . . 4 ⊢ ({𝐾, 𝑁} ⊆ 𝑒 ↔ {𝑁, 𝐾} ⊆ 𝑒) |
5 | 4 | rexbii 3070 | . . 3 ⊢ (∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝐾} ⊆ 𝑒) |
6 | 1, 2, 5 | 3anbi123i 1270 | . 2 ⊢ (((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐾 ∈ (Vtx‘𝐺)) ∧ 𝑁 ≠ 𝐾 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒) ↔ ((𝐾 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)) ∧ 𝐾 ≠ 𝑁 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝐾} ⊆ 𝑒)) |
7 | eqid 2651 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
8 | eqid 2651 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
9 | 7, 8 | nbgrel 26278 | . 2 ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐾 ∈ (Vtx‘𝐺)) ∧ 𝑁 ≠ 𝐾 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒)) |
10 | 7, 8 | nbgrel 26278 | . 2 ⊢ (𝐾 ∈ (𝐺 NeighbVtx 𝑁) ↔ ((𝐾 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)) ∧ 𝐾 ≠ 𝑁 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝐾} ⊆ 𝑒)) |
11 | 6, 9, 10 | 3bitr4i 292 | 1 ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ 𝐾 ∈ (𝐺 NeighbVtx 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∧ w3a 1054 ∈ wcel 2030 ≠ wne 2823 ∃wrex 2942 ⊆ wss 3607 {cpr 4212 ‘cfv 5926 (class class class)co 6690 Vtxcvtx 25919 Edgcedg 25984 NeighbVtx cnbgr 26269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-nbgr 26270 |
This theorem is referenced by: nbusgredgeu0 26314 uvtxnbgrvtx 26341 cplgr3v 26387 frgrncvvdeqlem1 27279 frgrwopreglem4a 27290 numclwlk1lem2foa 27344 |
Copyright terms: Public domain | W3C validator |