![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbgrssvwo2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of nbgrssvwo2 26449 as of 12-Feb-2022. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
nbgrssovtxOLD.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
nbgrssvwo2OLD | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑀 ∉ (𝐺 NeighbVtx 𝑁)) → (𝐺 NeighbVtx 𝑁) ⊆ (𝑉 ∖ {𝑀, 𝑁})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbgrssovtxOLD.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | nbgrssovtxOLD 26451 | . . . 4 ⊢ (𝐺 ∈ 𝑊 → (𝐺 NeighbVtx 𝑁) ⊆ (𝑉 ∖ {𝑁})) |
3 | df-nel 3028 | . . . . . 6 ⊢ (𝑀 ∉ (𝐺 NeighbVtx 𝑁) ↔ ¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑁)) | |
4 | disjsn 4382 | . . . . . 6 ⊢ (((𝐺 NeighbVtx 𝑁) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑁)) | |
5 | 3, 4 | sylbb2 228 | . . . . 5 ⊢ (𝑀 ∉ (𝐺 NeighbVtx 𝑁) → ((𝐺 NeighbVtx 𝑁) ∩ {𝑀}) = ∅) |
6 | reldisj 4155 | . . . . 5 ⊢ ((𝐺 NeighbVtx 𝑁) ⊆ (𝑉 ∖ {𝑁}) → (((𝐺 NeighbVtx 𝑁) ∩ {𝑀}) = ∅ ↔ (𝐺 NeighbVtx 𝑁) ⊆ ((𝑉 ∖ {𝑁}) ∖ {𝑀}))) | |
7 | 5, 6 | syl5ib 234 | . . . 4 ⊢ ((𝐺 NeighbVtx 𝑁) ⊆ (𝑉 ∖ {𝑁}) → (𝑀 ∉ (𝐺 NeighbVtx 𝑁) → (𝐺 NeighbVtx 𝑁) ⊆ ((𝑉 ∖ {𝑁}) ∖ {𝑀}))) |
8 | 2, 7 | syl 17 | . . 3 ⊢ (𝐺 ∈ 𝑊 → (𝑀 ∉ (𝐺 NeighbVtx 𝑁) → (𝐺 NeighbVtx 𝑁) ⊆ ((𝑉 ∖ {𝑁}) ∖ {𝑀}))) |
9 | 8 | imp 444 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑀 ∉ (𝐺 NeighbVtx 𝑁)) → (𝐺 NeighbVtx 𝑁) ⊆ ((𝑉 ∖ {𝑁}) ∖ {𝑀})) |
10 | prcom 4403 | . . . 4 ⊢ {𝑀, 𝑁} = {𝑁, 𝑀} | |
11 | 10 | difeq2i 3860 | . . 3 ⊢ (𝑉 ∖ {𝑀, 𝑁}) = (𝑉 ∖ {𝑁, 𝑀}) |
12 | difpr 4471 | . . 3 ⊢ (𝑉 ∖ {𝑁, 𝑀}) = ((𝑉 ∖ {𝑁}) ∖ {𝑀}) | |
13 | 11, 12 | eqtri 2774 | . 2 ⊢ (𝑉 ∖ {𝑀, 𝑁}) = ((𝑉 ∖ {𝑁}) ∖ {𝑀}) |
14 | 9, 13 | syl6sseqr 3785 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑀 ∉ (𝐺 NeighbVtx 𝑁)) → (𝐺 NeighbVtx 𝑁) ⊆ (𝑉 ∖ {𝑀, 𝑁})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ∉ wnel 3027 ∖ cdif 3704 ∩ cin 3706 ⊆ wss 3707 ∅c0 4050 {csn 4313 {cpr 4315 ‘cfv 6041 (class class class)co 6805 Vtxcvtx 26065 NeighbVtx cnbgr 26415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-fal 1630 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fv 6049 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-1st 7325 df-2nd 7326 df-nbgr 26416 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |