![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbgrssovtxOLD | Structured version Visualization version GIF version |
Description: Obsolete version of nbgrssovtx 26477 as of 12-Feb-2022. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
nbgrssovtxOLD.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
nbgrssovtxOLD | ⊢ (𝐺 ∈ 𝑊 → (𝐺 NeighbVtx 𝑁) ⊆ (𝑉 ∖ {𝑁})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbgrssovtxOLD.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | nbgrisvtxOLD 26457 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ (𝐺 NeighbVtx 𝑁)) → 𝑣 ∈ 𝑉) |
3 | nbgrnself2OLD 26479 | . . . . . . . . . 10 ⊢ (𝐺 ∈ 𝑊 → 𝑁 ∉ (𝐺 NeighbVtx 𝑁)) | |
4 | 3 | adantr 472 | . . . . . . . . 9 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑣 = 𝑁) → 𝑁 ∉ (𝐺 NeighbVtx 𝑁)) |
5 | df-nel 3036 | . . . . . . . . . 10 ⊢ (𝑣 ∉ (𝐺 NeighbVtx 𝑁) ↔ ¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑁)) | |
6 | neleq1 3040 | . . . . . . . . . . 11 ⊢ (𝑣 = 𝑁 → (𝑣 ∉ (𝐺 NeighbVtx 𝑁) ↔ 𝑁 ∉ (𝐺 NeighbVtx 𝑁))) | |
7 | 6 | adantl 473 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑣 = 𝑁) → (𝑣 ∉ (𝐺 NeighbVtx 𝑁) ↔ 𝑁 ∉ (𝐺 NeighbVtx 𝑁))) |
8 | 5, 7 | syl5bbr 274 | . . . . . . . . 9 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑣 = 𝑁) → (¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑁) ↔ 𝑁 ∉ (𝐺 NeighbVtx 𝑁))) |
9 | 4, 8 | mpbird 247 | . . . . . . . 8 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑣 = 𝑁) → ¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑁)) |
10 | 9 | ex 449 | . . . . . . 7 ⊢ (𝐺 ∈ 𝑊 → (𝑣 = 𝑁 → ¬ 𝑣 ∈ (𝐺 NeighbVtx 𝑁))) |
11 | 10 | con2d 129 | . . . . . 6 ⊢ (𝐺 ∈ 𝑊 → (𝑣 ∈ (𝐺 NeighbVtx 𝑁) → ¬ 𝑣 = 𝑁)) |
12 | 11 | imp 444 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ (𝐺 NeighbVtx 𝑁)) → ¬ 𝑣 = 𝑁) |
13 | 12 | neqned 2939 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ (𝐺 NeighbVtx 𝑁)) → 𝑣 ≠ 𝑁) |
14 | eldifsn 4462 | . . . 4 ⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑣 ∈ 𝑉 ∧ 𝑣 ≠ 𝑁)) | |
15 | 2, 13, 14 | sylanbrc 701 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ (𝐺 NeighbVtx 𝑁)) → 𝑣 ∈ (𝑉 ∖ {𝑁})) |
16 | 15 | ex 449 | . 2 ⊢ (𝐺 ∈ 𝑊 → (𝑣 ∈ (𝐺 NeighbVtx 𝑁) → 𝑣 ∈ (𝑉 ∖ {𝑁}))) |
17 | 16 | ssrdv 3750 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐺 NeighbVtx 𝑁) ⊆ (𝑉 ∖ {𝑁})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∉ wnel 3035 ∖ cdif 3712 ⊆ wss 3715 {csn 4321 ‘cfv 6049 (class class class)co 6814 Vtxcvtx 26094 NeighbVtx cnbgr 26444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-nbgr 26445 |
This theorem is referenced by: nbgrssvwo2OLD 26481 |
Copyright terms: Public domain | W3C validator |