![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbgrnself2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of nbgrnself2 26479 as of 12-Feb-2022. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
nbgrnself2OLD | ⊢ (𝐺 ∈ 𝑊 → 𝑁 ∉ (𝐺 NeighbVtx 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ (𝑣 = 𝑁 → 𝑣 = 𝑁) | |
2 | oveq2 6804 | . . . . 5 ⊢ (𝑣 = 𝑁 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑁)) | |
3 | 1, 2 | neleq12d 3050 | . . . 4 ⊢ (𝑣 = 𝑁 → (𝑣 ∉ (𝐺 NeighbVtx 𝑣) ↔ 𝑁 ∉ (𝐺 NeighbVtx 𝑁))) |
4 | 3 | rspccv 3457 | . . 3 ⊢ (∀𝑣 ∈ (Vtx‘𝐺)𝑣 ∉ (𝐺 NeighbVtx 𝑣) → (𝑁 ∈ (Vtx‘𝐺) → 𝑁 ∉ (𝐺 NeighbVtx 𝑁))) |
5 | eqid 2771 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
6 | 5 | nbgrnself 26478 | . . . 4 ⊢ ∀𝑣 ∈ (Vtx‘𝐺)𝑣 ∉ (𝐺 NeighbVtx 𝑣) |
7 | 6 | a1i 11 | . . 3 ⊢ (𝐺 ∈ 𝑊 → ∀𝑣 ∈ (Vtx‘𝐺)𝑣 ∉ (𝐺 NeighbVtx 𝑣)) |
8 | 4, 7 | syl11 33 | . 2 ⊢ (𝑁 ∈ (Vtx‘𝐺) → (𝐺 ∈ 𝑊 → 𝑁 ∉ (𝐺 NeighbVtx 𝑁))) |
9 | 5 | nbgrisvtxOLD 26460 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝑁)) → 𝑁 ∈ (Vtx‘𝐺)) |
10 | 9 | ex 397 | . . . 4 ⊢ (𝐺 ∈ 𝑊 → (𝑁 ∈ (𝐺 NeighbVtx 𝑁) → 𝑁 ∈ (Vtx‘𝐺))) |
11 | 10 | con3rr3 152 | . . 3 ⊢ (¬ 𝑁 ∈ (Vtx‘𝐺) → (𝐺 ∈ 𝑊 → ¬ 𝑁 ∈ (𝐺 NeighbVtx 𝑁))) |
12 | df-nel 3047 | . . 3 ⊢ (𝑁 ∉ (𝐺 NeighbVtx 𝑁) ↔ ¬ 𝑁 ∈ (𝐺 NeighbVtx 𝑁)) | |
13 | 11, 12 | syl6ibr 242 | . 2 ⊢ (¬ 𝑁 ∈ (Vtx‘𝐺) → (𝐺 ∈ 𝑊 → 𝑁 ∉ (𝐺 NeighbVtx 𝑁))) |
14 | 8, 13 | pm2.61i 176 | 1 ⊢ (𝐺 ∈ 𝑊 → 𝑁 ∉ (𝐺 NeighbVtx 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1631 ∈ wcel 2145 ∉ wnel 3046 ∀wral 3061 ‘cfv 6030 (class class class)co 6796 Vtxcvtx 26095 NeighbVtx cnbgr 26447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-1st 7319 df-2nd 7320 df-nbgr 26448 |
This theorem is referenced by: nbgrssovtxOLD 26483 usgrnbnself2OLD 26485 |
Copyright terms: Public domain | W3C validator |