![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbgrnself | Structured version Visualization version GIF version |
Description: A vertex in a graph is not a neighbor of itself. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 21-Mar-2021.) |
Ref | Expression |
---|---|
nbgrnself.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
nbgrnself | ⊢ ∀𝑣 ∈ 𝑉 𝑣 ∉ (𝐺 NeighbVtx 𝑣) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neldifsnd 4457 | . . . . 5 ⊢ (𝑣 ∈ 𝑉 → ¬ 𝑣 ∈ (𝑉 ∖ {𝑣})) | |
2 | 1 | intnanrd 999 | . . . 4 ⊢ (𝑣 ∈ 𝑉 → ¬ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒)) |
3 | df-nel 3046 | . . . . 5 ⊢ (𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ ¬ 𝑣 ∈ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒}) | |
4 | preq2 4403 | . . . . . . . 8 ⊢ (𝑛 = 𝑣 → {𝑣, 𝑛} = {𝑣, 𝑣}) | |
5 | 4 | sseq1d 3779 | . . . . . . 7 ⊢ (𝑛 = 𝑣 → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑣, 𝑣} ⊆ 𝑒)) |
6 | 5 | rexbidv 3199 | . . . . . 6 ⊢ (𝑛 = 𝑣 → (∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒)) |
7 | 6 | elrab 3513 | . . . . 5 ⊢ (𝑣 ∈ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒)) |
8 | 3, 7 | xchbinx 323 | . . . 4 ⊢ (𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ ¬ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒)) |
9 | 2, 8 | sylibr 224 | . . 3 ⊢ (𝑣 ∈ 𝑉 → 𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒}) |
10 | eqidd 2771 | . . . 4 ⊢ (𝑣 ∈ 𝑉 → 𝑣 = 𝑣) | |
11 | nbgrnself.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
12 | eqid 2770 | . . . . 5 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
13 | 11, 12 | nbgrval 26451 | . . . 4 ⊢ (𝑣 ∈ 𝑉 → (𝐺 NeighbVtx 𝑣) = {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒}) |
14 | 10, 13 | neleq12d 3049 | . . 3 ⊢ (𝑣 ∈ 𝑉 → (𝑣 ∉ (𝐺 NeighbVtx 𝑣) ↔ 𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒})) |
15 | 9, 14 | mpbird 247 | . 2 ⊢ (𝑣 ∈ 𝑉 → 𝑣 ∉ (𝐺 NeighbVtx 𝑣)) |
16 | 15 | rgen 3070 | 1 ⊢ ∀𝑣 ∈ 𝑉 𝑣 ∉ (𝐺 NeighbVtx 𝑣) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ∉ wnel 3045 ∀wral 3060 ∃wrex 3061 {crab 3064 ∖ cdif 3718 ⊆ wss 3721 {csn 4314 {cpr 4316 ‘cfv 6031 (class class class)co 6792 Vtxcvtx 26094 Edgcedg 26159 NeighbVtx cnbgr 26446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-nbgr 26447 |
This theorem is referenced by: nbgrnself2 26478 nbgrnself2OLD 26481 |
Copyright terms: Public domain | W3C validator |