MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrnself Structured version   Visualization version   GIF version

Theorem nbgrnself 26477
Description: A vertex in a graph is not a neighbor of itself. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 21-Mar-2021.)
Hypothesis
Ref Expression
nbgrnself.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbgrnself 𝑣𝑉 𝑣 ∉ (𝐺 NeighbVtx 𝑣)
Distinct variable group:   𝑣,𝑉
Allowed substitution hint:   𝐺(𝑣)

Proof of Theorem nbgrnself
Dummy variables 𝑒 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neldifsnd 4457 . . . . 5 (𝑣𝑉 → ¬ 𝑣 ∈ (𝑉 ∖ {𝑣}))
21intnanrd 999 . . . 4 (𝑣𝑉 → ¬ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒))
3 df-nel 3046 . . . . 5 (𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ ¬ 𝑣 ∈ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒})
4 preq2 4403 . . . . . . . 8 (𝑛 = 𝑣 → {𝑣, 𝑛} = {𝑣, 𝑣})
54sseq1d 3779 . . . . . . 7 (𝑛 = 𝑣 → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑣, 𝑣} ⊆ 𝑒))
65rexbidv 3199 . . . . . 6 (𝑛 = 𝑣 → (∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒))
76elrab 3513 . . . . 5 (𝑣 ∈ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒))
83, 7xchbinx 323 . . . 4 (𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ ¬ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒))
92, 8sylibr 224 . . 3 (𝑣𝑉𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒})
10 eqidd 2771 . . . 4 (𝑣𝑉𝑣 = 𝑣)
11 nbgrnself.v . . . . 5 𝑉 = (Vtx‘𝐺)
12 eqid 2770 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
1311, 12nbgrval 26451 . . . 4 (𝑣𝑉 → (𝐺 NeighbVtx 𝑣) = {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒})
1410, 13neleq12d 3049 . . 3 (𝑣𝑉 → (𝑣 ∉ (𝐺 NeighbVtx 𝑣) ↔ 𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒}))
159, 14mpbird 247 . 2 (𝑣𝑉𝑣 ∉ (𝐺 NeighbVtx 𝑣))
1615rgen 3070 1 𝑣𝑉 𝑣 ∉ (𝐺 NeighbVtx 𝑣)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 382   = wceq 1630  wcel 2144  wnel 3045  wral 3060  wrex 3061  {crab 3064  cdif 3718  wss 3721  {csn 4314  {cpr 4316  cfv 6031  (class class class)co 6792  Vtxcvtx 26094  Edgcedg 26159   NeighbVtx cnbgr 26446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-nbgr 26447
This theorem is referenced by:  nbgrnself2  26478  nbgrnself2OLD  26481
  Copyright terms: Public domain W3C validator