Step | Hyp | Ref
| Expression |
1 | | nbgr2vtx1edg.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
2 | 1 | fvexi 6240 |
. . . 4
⊢ 𝑉 ∈ V |
3 | | hash2prb 13292 |
. . . 4
⊢ (𝑉 ∈ V → ((#‘𝑉) = 2 ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}))) |
4 | 2, 3 | ax-mp 5 |
. . 3
⊢
((#‘𝑉) = 2
↔ ∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) |
5 | | simpll 805 |
. . . . . . . . . 10
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
6 | 5 | ancomd 466 |
. . . . . . . . 9
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → (𝑏 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉)) |
7 | | simpl 472 |
. . . . . . . . . . 11
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎 ≠ 𝑏) |
8 | 7 | necomd 2878 |
. . . . . . . . . 10
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}) → 𝑏 ≠ 𝑎) |
9 | 8 | ad2antlr 763 |
. . . . . . . . 9
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑏 ≠ 𝑎) |
10 | | id 22 |
. . . . . . . . . . 11
⊢ ({𝑎, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸) |
11 | | sseq2 3660 |
. . . . . . . . . . . 12
⊢ (𝑒 = {𝑎, 𝑏} → ({𝑎, 𝑏} ⊆ 𝑒 ↔ {𝑎, 𝑏} ⊆ {𝑎, 𝑏})) |
12 | 11 | adantl 481 |
. . . . . . . . . . 11
⊢ (({𝑎, 𝑏} ∈ 𝐸 ∧ 𝑒 = {𝑎, 𝑏}) → ({𝑎, 𝑏} ⊆ 𝑒 ↔ {𝑎, 𝑏} ⊆ {𝑎, 𝑏})) |
13 | | ssid 3657 |
. . . . . . . . . . . 12
⊢ {𝑎, 𝑏} ⊆ {𝑎, 𝑏} |
14 | 13 | a1i 11 |
. . . . . . . . . . 11
⊢ ({𝑎, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ⊆ {𝑎, 𝑏}) |
15 | 10, 12, 14 | rspcedvd 3348 |
. . . . . . . . . 10
⊢ ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑒 ∈ 𝐸 {𝑎, 𝑏} ⊆ 𝑒) |
16 | 15 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → ∃𝑒 ∈ 𝐸 {𝑎, 𝑏} ⊆ 𝑒) |
17 | | nbgr2vtx1edg.e |
. . . . . . . . . 10
⊢ 𝐸 = (Edg‘𝐺) |
18 | 1, 17 | nbgrel 26278 |
. . . . . . . . 9
⊢ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ↔ ((𝑏 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ≠ 𝑎 ∧ ∃𝑒 ∈ 𝐸 {𝑎, 𝑏} ⊆ 𝑒)) |
19 | 6, 9, 16, 18 | syl3anbrc 1265 |
. . . . . . . 8
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑏 ∈ (𝐺 NeighbVtx 𝑎)) |
20 | 7 | ad2antlr 763 |
. . . . . . . . 9
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑎 ≠ 𝑏) |
21 | | sseq2 3660 |
. . . . . . . . . . . 12
⊢ (𝑒 = {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 ↔ {𝑏, 𝑎} ⊆ {𝑎, 𝑏})) |
22 | 21 | adantl 481 |
. . . . . . . . . . 11
⊢ (({𝑎, 𝑏} ∈ 𝐸 ∧ 𝑒 = {𝑎, 𝑏}) → ({𝑏, 𝑎} ⊆ 𝑒 ↔ {𝑏, 𝑎} ⊆ {𝑎, 𝑏})) |
23 | | prcom 4299 |
. . . . . . . . . . . . 13
⊢ {𝑏, 𝑎} = {𝑎, 𝑏} |
24 | 23 | eqimssi 3692 |
. . . . . . . . . . . 12
⊢ {𝑏, 𝑎} ⊆ {𝑎, 𝑏} |
25 | 24 | a1i 11 |
. . . . . . . . . . 11
⊢ ({𝑎, 𝑏} ∈ 𝐸 → {𝑏, 𝑎} ⊆ {𝑎, 𝑏}) |
26 | 10, 22, 25 | rspcedvd 3348 |
. . . . . . . . . 10
⊢ ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑒 ∈ 𝐸 {𝑏, 𝑎} ⊆ 𝑒) |
27 | 26 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → ∃𝑒 ∈ 𝐸 {𝑏, 𝑎} ⊆ 𝑒) |
28 | 1, 17 | nbgrel 26278 |
. . . . . . . . 9
⊢ (𝑎 ∈ (𝐺 NeighbVtx 𝑏) ↔ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏 ∧ ∃𝑒 ∈ 𝐸 {𝑏, 𝑎} ⊆ 𝑒)) |
29 | 5, 20, 27, 28 | syl3anbrc 1265 |
. . . . . . . 8
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) |
30 | | difprsn1 4362 |
. . . . . . . . . . . . 13
⊢ (𝑎 ≠ 𝑏 → ({𝑎, 𝑏} ∖ {𝑎}) = {𝑏}) |
31 | 30 | raleqdv 3174 |
. . . . . . . . . . . 12
⊢ (𝑎 ≠ 𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ↔ ∀𝑛 ∈ {𝑏}𝑛 ∈ (𝐺 NeighbVtx 𝑎))) |
32 | | vex 3234 |
. . . . . . . . . . . . 13
⊢ 𝑏 ∈ V |
33 | | eleq1 2718 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑏 → (𝑛 ∈ (𝐺 NeighbVtx 𝑎) ↔ 𝑏 ∈ (𝐺 NeighbVtx 𝑎))) |
34 | 32, 33 | ralsn 4254 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
{𝑏}𝑛 ∈ (𝐺 NeighbVtx 𝑎) ↔ 𝑏 ∈ (𝐺 NeighbVtx 𝑎)) |
35 | 31, 34 | syl6bb 276 |
. . . . . . . . . . 11
⊢ (𝑎 ≠ 𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ↔ 𝑏 ∈ (𝐺 NeighbVtx 𝑎))) |
36 | | difprsn2 4363 |
. . . . . . . . . . . . 13
⊢ (𝑎 ≠ 𝑏 → ({𝑎, 𝑏} ∖ {𝑏}) = {𝑎}) |
37 | 36 | raleqdv 3174 |
. . . . . . . . . . . 12
⊢ (𝑎 ≠ 𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏) ↔ ∀𝑛 ∈ {𝑎}𝑛 ∈ (𝐺 NeighbVtx 𝑏))) |
38 | | vex 3234 |
. . . . . . . . . . . . 13
⊢ 𝑎 ∈ V |
39 | | eleq1 2718 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑎 → (𝑛 ∈ (𝐺 NeighbVtx 𝑏) ↔ 𝑎 ∈ (𝐺 NeighbVtx 𝑏))) |
40 | 38, 39 | ralsn 4254 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
{𝑎}𝑛 ∈ (𝐺 NeighbVtx 𝑏) ↔ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) |
41 | 37, 40 | syl6bb 276 |
. . . . . . . . . . 11
⊢ (𝑎 ≠ 𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏) ↔ 𝑎 ∈ (𝐺 NeighbVtx 𝑏))) |
42 | 35, 41 | anbi12d 747 |
. . . . . . . . . 10
⊢ (𝑎 ≠ 𝑏 → ((∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏)) ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)))) |
43 | 42 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}) → ((∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏)) ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)))) |
44 | 43 | ad2antlr 763 |
. . . . . . . 8
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → ((∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏)) ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)))) |
45 | 19, 29, 44 | mpbir2and 977 |
. . . . . . 7
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏))) |
46 | 45 | ex 449 |
. . . . . 6
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) → ({𝑎, 𝑏} ∈ 𝐸 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏)))) |
47 | | eleq1 2718 |
. . . . . . . . 9
⊢ (𝑉 = {𝑎, 𝑏} → (𝑉 ∈ 𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸)) |
48 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑉 = {𝑎, 𝑏} → 𝑉 = {𝑎, 𝑏}) |
49 | | difeq1 3754 |
. . . . . . . . . . . 12
⊢ (𝑉 = {𝑎, 𝑏} → (𝑉 ∖ {𝑣}) = ({𝑎, 𝑏} ∖ {𝑣})) |
50 | 49 | raleqdv 3174 |
. . . . . . . . . . 11
⊢ (𝑉 = {𝑎, 𝑏} → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
51 | 48, 50 | raleqbidv 3182 |
. . . . . . . . . 10
⊢ (𝑉 = {𝑎, 𝑏} → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑣 ∈ {𝑎, 𝑏}∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
52 | | sneq 4220 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑎 → {𝑣} = {𝑎}) |
53 | 52 | difeq2d 3761 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑎 → ({𝑎, 𝑏} ∖ {𝑣}) = ({𝑎, 𝑏} ∖ {𝑎})) |
54 | | oveq2 6698 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑎 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑎)) |
55 | 54 | eleq2d 2716 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑎 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑎))) |
56 | 53, 55 | raleqbidv 3182 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑎 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎))) |
57 | | sneq 4220 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑏 → {𝑣} = {𝑏}) |
58 | 57 | difeq2d 3761 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑏 → ({𝑎, 𝑏} ∖ {𝑣}) = ({𝑎, 𝑏} ∖ {𝑏})) |
59 | | oveq2 6698 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑏 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑏)) |
60 | 59 | eleq2d 2716 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑏 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑏))) |
61 | 58, 60 | raleqbidv 3182 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏))) |
62 | 38, 32, 56, 61 | ralpr 4270 |
. . . . . . . . . 10
⊢
(∀𝑣 ∈
{𝑎, 𝑏}∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏))) |
63 | 51, 62 | syl6bb 276 |
. . . . . . . . 9
⊢ (𝑉 = {𝑎, 𝑏} → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏)))) |
64 | 47, 63 | imbi12d 333 |
. . . . . . . 8
⊢ (𝑉 = {𝑎, 𝑏} → ((𝑉 ∈ 𝐸 → ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)) ↔ ({𝑎, 𝑏} ∈ 𝐸 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏))))) |
65 | 64 | adantl 481 |
. . . . . . 7
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}) → ((𝑉 ∈ 𝐸 → ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)) ↔ ({𝑎, 𝑏} ∈ 𝐸 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏))))) |
66 | 65 | adantl 481 |
. . . . . 6
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) → ((𝑉 ∈ 𝐸 → ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)) ↔ ({𝑎, 𝑏} ∈ 𝐸 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏))))) |
67 | 46, 66 | mpbird 247 |
. . . . 5
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) → (𝑉 ∈ 𝐸 → ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
68 | 67 | ex 449 |
. . . 4
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}) → (𝑉 ∈ 𝐸 → ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))) |
69 | 68 | rexlimivv 3065 |
. . 3
⊢
(∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}) → (𝑉 ∈ 𝐸 → ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
70 | 4, 69 | sylbi 207 |
. 2
⊢
((#‘𝑉) = 2
→ (𝑉 ∈ 𝐸 → ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
71 | 70 | imp 444 |
1
⊢
(((#‘𝑉) = 2
∧ 𝑉 ∈ 𝐸) → ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)) |