Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgr1vtx Structured version   Visualization version   GIF version

Theorem nbgr1vtx 26474
 Description: In a graph with one vertex, all neighborhoods are empty. (Contributed by AV, 15-Nov-2020.)
Assertion
Ref Expression
nbgr1vtx ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅)

Proof of Theorem nbgr1vtx
Dummy variables 𝑒 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6363 . . . . . . 7 (Vtx‘𝐺) ∈ V
2 hash1snb 13419 . . . . . . 7 ((Vtx‘𝐺) ∈ V → ((♯‘(Vtx‘𝐺)) = 1 ↔ ∃𝑣(Vtx‘𝐺) = {𝑣}))
31, 2ax-mp 5 . . . . . 6 ((♯‘(Vtx‘𝐺)) = 1 ↔ ∃𝑣(Vtx‘𝐺) = {𝑣})
4 ral0 4220 . . . . . . . . 9 𝑛 ∈ ∅ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒
5 eleq2 2828 . . . . . . . . . . . 12 ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) ↔ 𝐾 ∈ {𝑣}))
6 simpr 479 . . . . . . . . . . . . . . . 16 ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → (Vtx‘𝐺) = {𝑣})
7 sneq 4331 . . . . . . . . . . . . . . . . 17 (𝐾 = 𝑣 → {𝐾} = {𝑣})
87adantr 472 . . . . . . . . . . . . . . . 16 ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → {𝐾} = {𝑣})
96, 8difeq12d 3872 . . . . . . . . . . . . . . 15 ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → ((Vtx‘𝐺) ∖ {𝐾}) = ({𝑣} ∖ {𝑣}))
10 difid 4091 . . . . . . . . . . . . . . 15 ({𝑣} ∖ {𝑣}) = ∅
119, 10syl6eq 2810 . . . . . . . . . . . . . 14 ((𝐾 = 𝑣 ∧ (Vtx‘𝐺) = {𝑣}) → ((Vtx‘𝐺) ∖ {𝐾}) = ∅)
1211ex 449 . . . . . . . . . . . . 13 (𝐾 = 𝑣 → ((Vtx‘𝐺) = {𝑣} → ((Vtx‘𝐺) ∖ {𝐾}) = ∅))
13 elsni 4338 . . . . . . . . . . . . 13 (𝐾 ∈ {𝑣} → 𝐾 = 𝑣)
1412, 13syl11 33 . . . . . . . . . . . 12 ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ {𝑣} → ((Vtx‘𝐺) ∖ {𝐾}) = ∅))
155, 14sylbid 230 . . . . . . . . . . 11 ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) → ((Vtx‘𝐺) ∖ {𝐾}) = ∅))
1615imp 444 . . . . . . . . . 10 (((Vtx‘𝐺) = {𝑣} ∧ 𝐾 ∈ (Vtx‘𝐺)) → ((Vtx‘𝐺) ∖ {𝐾}) = ∅)
1716raleqdv 3283 . . . . . . . . 9 (((Vtx‘𝐺) = {𝑣} ∧ 𝐾 ∈ (Vtx‘𝐺)) → (∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒 ↔ ∀𝑛 ∈ ∅ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒))
184, 17mpbiri 248 . . . . . . . 8 (((Vtx‘𝐺) = {𝑣} ∧ 𝐾 ∈ (Vtx‘𝐺)) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)
1918ex 449 . . . . . . 7 ((Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒))
2019exlimiv 2007 . . . . . 6 (∃𝑣(Vtx‘𝐺) = {𝑣} → (𝐾 ∈ (Vtx‘𝐺) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒))
213, 20sylbi 207 . . . . 5 ((♯‘(Vtx‘𝐺)) = 1 → (𝐾 ∈ (Vtx‘𝐺) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒))
2221impcom 445 . . . 4 ((𝐾 ∈ (Vtx‘𝐺) ∧ (♯‘(Vtx‘𝐺)) = 1) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)
2322nbgr0vtxlem 26471 . . 3 ((𝐾 ∈ (Vtx‘𝐺) ∧ (♯‘(Vtx‘𝐺)) = 1) → (𝐺 NeighbVtx 𝐾) = ∅)
2423ex 449 . 2 (𝐾 ∈ (Vtx‘𝐺) → ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅))
25 df-nel 3036 . . . 4 (𝐾 ∉ (Vtx‘𝐺) ↔ ¬ 𝐾 ∈ (Vtx‘𝐺))
26 eqid 2760 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
2726nbgrnvtx0 26452 . . . 4 (𝐾 ∉ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅)
2825, 27sylbir 225 . . 3 𝐾 ∈ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅)
2928a1d 25 . 2 𝐾 ∈ (Vtx‘𝐺) → ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅))
3024, 29pm2.61i 176 1 ((♯‘(Vtx‘𝐺)) = 1 → (𝐺 NeighbVtx 𝐾) = ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632  ∃wex 1853   ∈ wcel 2139   ∉ wnel 3035  ∀wral 3050  ∃wrex 3051  Vcvv 3340   ∖ cdif 3712   ⊆ wss 3715  ∅c0 4058  {csn 4321  {cpr 4323  ‘cfv 6049  (class class class)co 6814  1c1 10149  ♯chash 13331  Vtxcvtx 26094  Edgcedg 26159   NeighbVtx cnbgr 26444 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-hash 13332  df-nbgr 26445 This theorem is referenced by:  rusgr1vtx  26715
 Copyright terms: Public domain W3C validator