![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbgr0vtx | Structured version Visualization version GIF version |
Description: In a null graph (with no vertices), all neighborhoods are empty. (Contributed by AV, 15-Nov-2020.) |
Ref | Expression |
---|---|
nbgr0vtx | ⊢ ((Vtx‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4217 | . . 3 ⊢ ∀𝑛 ∈ ∅ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒 | |
2 | difeq1 3872 | . . . . 5 ⊢ ((Vtx‘𝐺) = ∅ → ((Vtx‘𝐺) ∖ {𝐾}) = (∅ ∖ {𝐾})) | |
3 | 0dif 4121 | . . . . 5 ⊢ (∅ ∖ {𝐾}) = ∅ | |
4 | 2, 3 | syl6eq 2821 | . . . 4 ⊢ ((Vtx‘𝐺) = ∅ → ((Vtx‘𝐺) ∖ {𝐾}) = ∅) |
5 | 4 | raleqdv 3293 | . . 3 ⊢ ((Vtx‘𝐺) = ∅ → (∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒 ↔ ∀𝑛 ∈ ∅ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)) |
6 | 1, 5 | mpbiri 248 | . 2 ⊢ ((Vtx‘𝐺) = ∅ → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
7 | 6 | nbgr0vtxlem 26474 | 1 ⊢ ((Vtx‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1631 ∀wral 3061 ∃wrex 3062 ∖ cdif 3720 ⊆ wss 3723 ∅c0 4063 {csn 4316 {cpr 4318 ‘cfv 6031 (class class class)co 6793 Vtxcvtx 26095 Edgcedg 26160 NeighbVtx cnbgr 26447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-1st 7315 df-2nd 7316 df-nbgr 26448 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |