MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nanim Structured version   Visualization version   GIF version

Theorem nanim 1601
Description: Show equivalence between implication and the Nicod version. To derive nic-dfim 1743, apply nanbi 1603. (Contributed by Jeff Hoffman, 19-Nov-2007.)
Assertion
Ref Expression
nanim ((𝜑𝜓) ↔ (𝜑 ⊼ (𝜓𝜓)))

Proof of Theorem nanim
StepHypRef Expression
1 nannan 1600 . 2 ((𝜑 ⊼ (𝜓𝜓)) ↔ (𝜑 → (𝜓𝜓)))
2 anidmdbi 681 . 2 ((𝜑 → (𝜓𝜓)) ↔ (𝜑𝜓))
31, 2bitr2i 265 1 ((𝜑𝜓) ↔ (𝜑 ⊼ (𝜓𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wnan 1596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385  df-nan 1597
This theorem is referenced by:  nic-dfim  1743  nic-ax  1747  waj-ax  32719  lukshef-ax2  32720
  Copyright terms: Public domain W3C validator