MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nalset Structured version   Visualization version   GIF version

Theorem nalset 4786
Description: No set contains all sets. Theorem 41 of [Suppes] p. 30. (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
nalset ¬ ∃𝑥𝑦 𝑦𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem nalset
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 alexn 1769 . 2 (∀𝑥𝑦 ¬ 𝑦𝑥 ↔ ¬ ∃𝑥𝑦 𝑦𝑥)
2 ax-sep 4772 . . 3 𝑦𝑧(𝑧𝑦 ↔ (𝑧𝑥 ∧ ¬ 𝑧𝑧))
3 elequ1 1995 . . . . . 6 (𝑧 = 𝑦 → (𝑧𝑦𝑦𝑦))
4 elequ1 1995 . . . . . . 7 (𝑧 = 𝑦 → (𝑧𝑥𝑦𝑥))
5 elequ1 1995 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧𝑧𝑦𝑧))
6 elequ2 2002 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑦𝑧𝑦𝑦))
75, 6bitrd 268 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧𝑧𝑦𝑦))
87notbid 308 . . . . . . 7 (𝑧 = 𝑦 → (¬ 𝑧𝑧 ↔ ¬ 𝑦𝑦))
94, 8anbi12d 746 . . . . . 6 (𝑧 = 𝑦 → ((𝑧𝑥 ∧ ¬ 𝑧𝑧) ↔ (𝑦𝑥 ∧ ¬ 𝑦𝑦)))
103, 9bibi12d 335 . . . . 5 (𝑧 = 𝑦 → ((𝑧𝑦 ↔ (𝑧𝑥 ∧ ¬ 𝑧𝑧)) ↔ (𝑦𝑦 ↔ (𝑦𝑥 ∧ ¬ 𝑦𝑦))))
1110spv 2258 . . . 4 (∀𝑧(𝑧𝑦 ↔ (𝑧𝑥 ∧ ¬ 𝑧𝑧)) → (𝑦𝑦 ↔ (𝑦𝑥 ∧ ¬ 𝑦𝑦)))
12 pclem6 970 . . . 4 ((𝑦𝑦 ↔ (𝑦𝑥 ∧ ¬ 𝑦𝑦)) → ¬ 𝑦𝑥)
1311, 12syl 17 . . 3 (∀𝑧(𝑧𝑦 ↔ (𝑧𝑥 ∧ ¬ 𝑧𝑧)) → ¬ 𝑦𝑥)
142, 13eximii 1762 . 2 𝑦 ¬ 𝑦𝑥
151, 14mpgbi 1723 1 ¬ ∃𝑥𝑦 𝑦𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 384  wal 1479  wex 1702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-12 2045  ax-13 2244  ax-sep 4772
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1703
This theorem is referenced by:  vprc  4787  kmlem2  8958
  Copyright terms: Public domain W3C validator