Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nacsfix Structured version   Visualization version   GIF version

Theorem nacsfix 37592
Description: An increasing sequence of closed sets in a Noetherian-type closure system eventually fixates. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
nacsfix ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∃𝑦 ∈ ℕ0𝑧 ∈ (ℤ𝑦)(𝐹𝑧) = (𝐹𝑦))
Distinct variable groups:   𝑧,𝐶,𝑦   𝑦,𝐹,𝑧   𝑧,𝑋,𝑦   𝑥,𝑦,𝑧,𝐹
Allowed substitution hints:   𝐶(𝑥)   𝑋(𝑥)

Proof of Theorem nacsfix
Dummy variables 𝑎 𝑏 𝑐 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvssunirn 6255 . . . . 5 (𝐹𝑧) ⊆ ran 𝐹
2 simplrr 818 . . . . 5 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑦) = ran 𝐹)
31, 2syl5sseqr 3687 . . . 4 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑧) ⊆ (𝐹𝑦))
4 simpll3 1122 . . . . 5 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)))
5 simplrl 817 . . . . 5 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → 𝑦 ∈ ℕ0)
6 simpr 476 . . . . 5 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → 𝑧 ∈ (ℤ𝑦))
7 incssnn0 37591 . . . . 5 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝑦 ∈ ℕ0𝑧 ∈ (ℤ𝑦)) → (𝐹𝑦) ⊆ (𝐹𝑧))
84, 5, 6, 7syl3anc 1366 . . . 4 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑦) ⊆ (𝐹𝑧))
93, 8eqssd 3653 . . 3 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑧) = (𝐹𝑦))
109ralrimiva 2995 . 2 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) → ∀𝑧 ∈ (ℤ𝑦)(𝐹𝑧) = (𝐹𝑦))
11 frn 6091 . . . . . . . 8 (𝐹:ℕ0𝐶 → ran 𝐹𝐶)
12113ad2ant2 1103 . . . . . . 7 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹𝐶)
13 elpw2g 4857 . . . . . . . 8 (𝐶 ∈ (NoeACS‘𝑋) → (ran 𝐹 ∈ 𝒫 𝐶 ↔ ran 𝐹𝐶))
14133ad2ant1 1102 . . . . . . 7 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (ran 𝐹 ∈ 𝒫 𝐶 ↔ ran 𝐹𝐶))
1512, 14mpbird 247 . . . . . 6 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹 ∈ 𝒫 𝐶)
16 elex 3243 . . . . . 6 (ran 𝐹 ∈ 𝒫 𝐶 → ran 𝐹 ∈ V)
1715, 16syl 17 . . . . 5 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹 ∈ V)
18 ffn 6083 . . . . . . . 8 (𝐹:ℕ0𝐶𝐹 Fn ℕ0)
19183ad2ant2 1103 . . . . . . 7 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → 𝐹 Fn ℕ0)
20 0nn0 11345 . . . . . . 7 0 ∈ ℕ0
21 fnfvelrn 6396 . . . . . . 7 ((𝐹 Fn ℕ0 ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ ran 𝐹)
2219, 20, 21sylancl 695 . . . . . 6 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (𝐹‘0) ∈ ran 𝐹)
23 ne0i 3954 . . . . . 6 ((𝐹‘0) ∈ ran 𝐹 → ran 𝐹 ≠ ∅)
2422, 23syl 17 . . . . 5 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹 ≠ ∅)
25 nn0re 11339 . . . . . . . . 9 (𝑎 ∈ ℕ0𝑎 ∈ ℝ)
2625ad2antrl 764 . . . . . . . 8 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → 𝑎 ∈ ℝ)
27 nn0re 11339 . . . . . . . . 9 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
2827ad2antll 765 . . . . . . . 8 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → 𝑏 ∈ ℝ)
29 simplrr 818 . . . . . . . . 9 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → 𝑏 ∈ ℕ0)
30 simpll3 1122 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)))
31 simplrl 817 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → 𝑎 ∈ ℕ0)
32 nn0z 11438 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℕ0𝑎 ∈ ℤ)
33 nn0z 11438 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
34 eluz 11739 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑏 ∈ (ℤ𝑎) ↔ 𝑎𝑏))
3532, 33, 34syl2an 493 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑏 ∈ (ℤ𝑎) ↔ 𝑎𝑏))
3635biimpar 501 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ 𝑎𝑏) → 𝑏 ∈ (ℤ𝑎))
3736adantll 750 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → 𝑏 ∈ (ℤ𝑎))
38 incssnn0 37591 . . . . . . . . . . . 12 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝑎 ∈ ℕ0𝑏 ∈ (ℤ𝑎)) → (𝐹𝑎) ⊆ (𝐹𝑏))
3930, 31, 37, 38syl3anc 1366 . . . . . . . . . . 11 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → (𝐹𝑎) ⊆ (𝐹𝑏))
40 ssequn1 3816 . . . . . . . . . . 11 ((𝐹𝑎) ⊆ (𝐹𝑏) ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑏))
4139, 40sylib 208 . . . . . . . . . 10 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → ((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑏))
42 eqimss 3690 . . . . . . . . . 10 (((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑏) → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑏))
4341, 42syl 17 . . . . . . . . 9 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑏))
44 fveq2 6229 . . . . . . . . . . 11 (𝑐 = 𝑏 → (𝐹𝑐) = (𝐹𝑏))
4544sseq2d 3666 . . . . . . . . . 10 (𝑐 = 𝑏 → (((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐) ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑏)))
4645rspcev 3340 . . . . . . . . 9 ((𝑏 ∈ ℕ0 ∧ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑏)) → ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
4729, 43, 46syl2anc 694 . . . . . . . 8 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
48 simplrl 817 . . . . . . . . 9 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → 𝑎 ∈ ℕ0)
49 simpll3 1122 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)))
50 simplrr 818 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → 𝑏 ∈ ℕ0)
51 eluz 11739 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → (𝑎 ∈ (ℤ𝑏) ↔ 𝑏𝑎))
5233, 32, 51syl2anr 494 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑎 ∈ (ℤ𝑏) ↔ 𝑏𝑎))
5352biimpar 501 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ 𝑏𝑎) → 𝑎 ∈ (ℤ𝑏))
5453adantll 750 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → 𝑎 ∈ (ℤ𝑏))
55 incssnn0 37591 . . . . . . . . . . . 12 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝑏 ∈ ℕ0𝑎 ∈ (ℤ𝑏)) → (𝐹𝑏) ⊆ (𝐹𝑎))
5649, 50, 54, 55syl3anc 1366 . . . . . . . . . . 11 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → (𝐹𝑏) ⊆ (𝐹𝑎))
57 ssequn2 3819 . . . . . . . . . . 11 ((𝐹𝑏) ⊆ (𝐹𝑎) ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑎))
5856, 57sylib 208 . . . . . . . . . 10 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → ((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑎))
59 eqimss 3690 . . . . . . . . . 10 (((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑎) → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑎))
6058, 59syl 17 . . . . . . . . 9 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑎))
61 fveq2 6229 . . . . . . . . . . 11 (𝑐 = 𝑎 → (𝐹𝑐) = (𝐹𝑎))
6261sseq2d 3666 . . . . . . . . . 10 (𝑐 = 𝑎 → (((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐) ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑎)))
6362rspcev 3340 . . . . . . . . 9 ((𝑎 ∈ ℕ0 ∧ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑎)) → ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
6448, 60, 63syl2anc 694 . . . . . . . 8 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
6526, 28, 47, 64lecasei 10181 . . . . . . 7 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
6665ralrimivva 3000 . . . . . 6 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∀𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
67 uneq1 3793 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑎) → (𝑦𝑧) = ((𝐹𝑎) ∪ 𝑧))
6867sseq1d 3665 . . . . . . . . . . 11 (𝑦 = (𝐹𝑎) → ((𝑦𝑧) ⊆ 𝑤 ↔ ((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤))
6968rexbidv 3081 . . . . . . . . . 10 (𝑦 = (𝐹𝑎) → (∃𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤 ↔ ∃𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤))
7069ralbidv 3015 . . . . . . . . 9 (𝑦 = (𝐹𝑎) → (∀𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤 ↔ ∀𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤))
7170ralrn 6402 . . . . . . . 8 (𝐹 Fn ℕ0 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤 ↔ ∀𝑎 ∈ ℕ0𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤))
72 uneq2 3794 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑏) → ((𝐹𝑎) ∪ 𝑧) = ((𝐹𝑎) ∪ (𝐹𝑏)))
7372sseq1d 3665 . . . . . . . . . . . 12 (𝑧 = (𝐹𝑏) → (((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤))
7473rexbidv 3081 . . . . . . . . . . 11 (𝑧 = (𝐹𝑏) → (∃𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ∃𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤))
7574ralrn 6402 . . . . . . . . . 10 (𝐹 Fn ℕ0 → (∀𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ∀𝑏 ∈ ℕ0𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤))
76 sseq2 3660 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑐) → (((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤 ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7776rexrn 6401 . . . . . . . . . . 11 (𝐹 Fn ℕ0 → (∃𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤 ↔ ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7877ralbidv 3015 . . . . . . . . . 10 (𝐹 Fn ℕ0 → (∀𝑏 ∈ ℕ0𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤 ↔ ∀𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7975, 78bitrd 268 . . . . . . . . 9 (𝐹 Fn ℕ0 → (∀𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ∀𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
8079ralbidv 3015 . . . . . . . 8 (𝐹 Fn ℕ0 → (∀𝑎 ∈ ℕ0𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ∀𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
8171, 80bitrd 268 . . . . . . 7 (𝐹 Fn ℕ0 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤 ↔ ∀𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
8219, 81syl 17 . . . . . 6 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤 ↔ ∀𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
8366, 82mpbird 247 . . . . 5 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤)
84 isipodrs 17208 . . . . 5 ((toInc‘ran 𝐹) ∈ Dirset ↔ (ran 𝐹 ∈ V ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤))
8517, 24, 83, 84syl3anbrc 1265 . . . 4 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (toInc‘ran 𝐹) ∈ Dirset)
86 isnacs3 37590 . . . . . . 7 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝒫 𝐶((toInc‘𝑦) ∈ Dirset → 𝑦𝑦)))
8786simprbi 479 . . . . . 6 (𝐶 ∈ (NoeACS‘𝑋) → ∀𝑦 ∈ 𝒫 𝐶((toInc‘𝑦) ∈ Dirset → 𝑦𝑦))
88873ad2ant1 1102 . . . . 5 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∀𝑦 ∈ 𝒫 𝐶((toInc‘𝑦) ∈ Dirset → 𝑦𝑦))
89 fveq2 6229 . . . . . . . 8 (𝑦 = ran 𝐹 → (toInc‘𝑦) = (toInc‘ran 𝐹))
9089eleq1d 2715 . . . . . . 7 (𝑦 = ran 𝐹 → ((toInc‘𝑦) ∈ Dirset ↔ (toInc‘ran 𝐹) ∈ Dirset))
91 unieq 4476 . . . . . . . 8 (𝑦 = ran 𝐹 𝑦 = ran 𝐹)
92 id 22 . . . . . . . 8 (𝑦 = ran 𝐹𝑦 = ran 𝐹)
9391, 92eleq12d 2724 . . . . . . 7 (𝑦 = ran 𝐹 → ( 𝑦𝑦 ran 𝐹 ∈ ran 𝐹))
9490, 93imbi12d 333 . . . . . 6 (𝑦 = ran 𝐹 → (((toInc‘𝑦) ∈ Dirset → 𝑦𝑦) ↔ ((toInc‘ran 𝐹) ∈ Dirset → ran 𝐹 ∈ ran 𝐹)))
9594rspcva 3338 . . . . 5 ((ran 𝐹 ∈ 𝒫 𝐶 ∧ ∀𝑦 ∈ 𝒫 𝐶((toInc‘𝑦) ∈ Dirset → 𝑦𝑦)) → ((toInc‘ran 𝐹) ∈ Dirset → ran 𝐹 ∈ ran 𝐹))
9615, 88, 95syl2anc 694 . . . 4 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ((toInc‘ran 𝐹) ∈ Dirset → ran 𝐹 ∈ ran 𝐹))
9785, 96mpd 15 . . 3 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹 ∈ ran 𝐹)
98 fvelrnb 6282 . . . 4 (𝐹 Fn ℕ0 → ( ran 𝐹 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ℕ0 (𝐹𝑦) = ran 𝐹))
9919, 98syl 17 . . 3 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ( ran 𝐹 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ℕ0 (𝐹𝑦) = ran 𝐹))
10097, 99mpbid 222 . 2 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∃𝑦 ∈ ℕ0 (𝐹𝑦) = ran 𝐹)
10110, 100reximddv 3047 1 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∃𝑦 ∈ ℕ0𝑧 ∈ (ℤ𝑦)(𝐹𝑧) = (𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  cun 3605  wss 3607  c0 3948  𝒫 cpw 4191   cuni 4468   class class class wbr 4685  ran crn 5144   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975   + caddc 9977  cle 10113  0cn0 11330  cz 11415  cuz 11725  Moorecmre 16289  Dirsetcdrs 16974  toInccipo 17198  NoeACScnacs 37582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-tset 16007  df-ple 16008  df-ocomp 16010  df-mre 16293  df-mrc 16294  df-acs 16296  df-preset 16975  df-drs 16976  df-poset 16993  df-ipo 17199  df-nacs 37583
This theorem is referenced by:  hbt  38017
  Copyright terms: Public domain W3C validator