![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nabbi | Structured version Visualization version GIF version |
Description: Not equivalent wff's correspond to not equal class abstractions. (Contributed by AV, 7-Apr-2019.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
nabbi | ⊢ (∃𝑥(𝜑 ↔ ¬ 𝜓) ↔ {𝑥 ∣ 𝜑} ≠ {𝑥 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2824 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ {𝑥 ∣ 𝜓} ↔ ¬ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | |
2 | exnal 1794 | . . . 4 ⊢ (∃𝑥 ¬ (𝜑 ↔ 𝜓) ↔ ¬ ∀𝑥(𝜑 ↔ 𝜓)) | |
3 | xor3 371 | . . . . 5 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)) | |
4 | 3 | exbii 1814 | . . . 4 ⊢ (∃𝑥 ¬ (𝜑 ↔ 𝜓) ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓)) |
5 | 2, 4 | bitr3i 266 | . . 3 ⊢ (¬ ∀𝑥(𝜑 ↔ 𝜓) ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓)) |
6 | abbi 2766 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | |
7 | 5, 6 | xchnxbi 321 | . 2 ⊢ (¬ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓)) |
8 | 1, 7 | bitr2i 265 | 1 ⊢ (∃𝑥(𝜑 ↔ ¬ 𝜓) ↔ {𝑥 ∣ 𝜑} ≠ {𝑥 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∀wal 1521 = wceq 1523 ∃wex 1744 {cab 2637 ≠ wne 2823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-ne 2824 |
This theorem is referenced by: suppvalbr 7344 |
Copyright terms: Public domain | W3C validator |