![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > n0lplig | Structured version Visualization version GIF version |
Description: There is no "empty line" in a planar incidence geometry. (Contributed by AV, 28-Nov-2021.) (Proof shortened by BJ, 2-Dec-2021.) |
Ref | Expression |
---|---|
n0lplig | ⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsnlplig 27676 | . 2 ⊢ (𝐺 ∈ Plig → ¬ {V} ∈ 𝐺) | |
2 | elirr 8656 | . . . . 5 ⊢ ¬ V ∈ V | |
3 | snprc 4386 | . . . . 5 ⊢ (¬ V ∈ V ↔ {V} = ∅) | |
4 | 2, 3 | mpbi 220 | . . . 4 ⊢ {V} = ∅ |
5 | 4 | eqcomi 2778 | . . 3 ⊢ ∅ = {V} |
6 | 5 | eleq1i 2839 | . 2 ⊢ (∅ ∈ 𝐺 ↔ {V} ∈ 𝐺) |
7 | 1, 6 | sylnibr 318 | 1 ⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1629 ∈ wcel 2143 Vcvv 3348 ∅c0 4060 {csn 4313 Pligcplig 27669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-sep 4911 ax-nul 4919 ax-pr 5033 ax-reg 8651 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ne 2942 df-ral 3064 df-rex 3065 df-reu 3066 df-v 3350 df-dif 3723 df-un 3725 df-nul 4061 df-sn 4314 df-pr 4316 df-uni 4572 df-plig 27670 |
This theorem is referenced by: pliguhgr 27681 |
Copyright terms: Public domain | W3C validator |