Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0elqs Structured version   Visualization version   GIF version

Theorem n0elqs 34391
Description: Two ways of expressing that the empty set is not an element of a quotient set. (Contributed by Peter Mazsa, 5-Dec-2019.)
Assertion
Ref Expression
n0elqs (¬ ∅ ∈ (𝐴 / 𝑅) ↔ 𝐴 ⊆ dom 𝑅)

Proof of Theorem n0elqs
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ecdmn0 7944 . . 3 (𝑥 ∈ dom 𝑅 ↔ [𝑥]𝑅 ≠ ∅)
21ralbii 3106 . 2 (∀𝑥𝐴 𝑥 ∈ dom 𝑅 ↔ ∀𝑥𝐴 [𝑥]𝑅 ≠ ∅)
3 dfss3 3721 . 2 (𝐴 ⊆ dom 𝑅 ↔ ∀𝑥𝐴 𝑥 ∈ dom 𝑅)
4 nne 2924 . . . . 5 (¬ [𝑥]𝑅 ≠ ∅ ↔ [𝑥]𝑅 = ∅)
54rexbii 3167 . . . 4 (∃𝑥𝐴 ¬ [𝑥]𝑅 ≠ ∅ ↔ ∃𝑥𝐴 [𝑥]𝑅 = ∅)
65notbii 309 . . 3 (¬ ∃𝑥𝐴 ¬ [𝑥]𝑅 ≠ ∅ ↔ ¬ ∃𝑥𝐴 [𝑥]𝑅 = ∅)
7 dfral2 3120 . . 3 (∀𝑥𝐴 [𝑥]𝑅 ≠ ∅ ↔ ¬ ∃𝑥𝐴 ¬ [𝑥]𝑅 ≠ ∅)
8 0ex 4930 . . . . . 6 ∅ ∈ V
98elqs 7954 . . . . 5 (∅ ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 ∅ = [𝑥]𝑅)
10 eqcom 2755 . . . . . 6 (∅ = [𝑥]𝑅 ↔ [𝑥]𝑅 = ∅)
1110rexbii 3167 . . . . 5 (∃𝑥𝐴 ∅ = [𝑥]𝑅 ↔ ∃𝑥𝐴 [𝑥]𝑅 = ∅)
129, 11bitri 264 . . . 4 (∅ ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 [𝑥]𝑅 = ∅)
1312notbii 309 . . 3 (¬ ∅ ∈ (𝐴 / 𝑅) ↔ ¬ ∃𝑥𝐴 [𝑥]𝑅 = ∅)
146, 7, 133bitr4ri 293 . 2 (¬ ∅ ∈ (𝐴 / 𝑅) ↔ ∀𝑥𝐴 [𝑥]𝑅 ≠ ∅)
152, 3, 143bitr4ri 293 1 (¬ ∅ ∈ (𝐴 / 𝑅) ↔ 𝐴 ⊆ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196   = wceq 1620  wcel 2127  wne 2920  wral 3038  wrex 3039  wss 3703  c0 4046  dom cdm 5254  [cec 7897   / cqs 7898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pr 5043
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-rab 3047  df-v 3330  df-sbc 3565  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-sn 4310  df-pr 4312  df-op 4316  df-br 4793  df-opab 4853  df-xp 5260  df-cnv 5262  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-ec 7901  df-qs 7905
This theorem is referenced by:  n0elqs2  34392
  Copyright terms: Public domain W3C validator