Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpmulmpt Structured version   Visualization version   GIF version

Theorem mzpmulmpt 37825
Description: Product of polynomial functions is polynomial. Maps-to version of mzpmulmpt 37825. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
mzpmulmpt (((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝐴 · 𝐵)) ∈ (mzPoly‘𝑉))
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem mzpmulmpt
StepHypRef Expression
1 mzpf 37819 . . . 4 ((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴):(ℤ ↑𝑚 𝑉)⟶ℤ)
2 ffn 6206 . . . 4 ((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴):(ℤ ↑𝑚 𝑉)⟶ℤ → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) Fn (ℤ ↑𝑚 𝑉))
31, 2syl 17 . . 3 ((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) Fn (ℤ ↑𝑚 𝑉))
4 mzpf 37819 . . . 4 ((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵):(ℤ ↑𝑚 𝑉)⟶ℤ)
5 ffn 6206 . . . 4 ((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵):(ℤ ↑𝑚 𝑉)⟶ℤ → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) Fn (ℤ ↑𝑚 𝑉))
64, 5syl 17 . . 3 ((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) Fn (ℤ ↑𝑚 𝑉))
7 ovex 6842 . . . 4 (ℤ ↑𝑚 𝑉) ∈ V
8 ofmpteq 7082 . . . 4 (((ℤ ↑𝑚 𝑉) ∈ V ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) Fn (ℤ ↑𝑚 𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) Fn (ℤ ↑𝑚 𝑉)) → ((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∘𝑓 · (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵)) = (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝐴 · 𝐵)))
97, 8mp3an1 1560 . . 3 (((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) Fn (ℤ ↑𝑚 𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) Fn (ℤ ↑𝑚 𝑉)) → ((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∘𝑓 · (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵)) = (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝐴 · 𝐵)))
103, 6, 9syl2an 495 . 2 (((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → ((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∘𝑓 · (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵)) = (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝐴 · 𝐵)))
11 mzpmul 37822 . 2 (((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → ((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∘𝑓 · (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵)) ∈ (mzPoly‘𝑉))
1210, 11eqeltrrd 2840 1 (((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝐴 · 𝐵)) ∈ (mzPoly‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  cmpt 4881   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6814  𝑓 cof 7061  𝑚 cmap 8025   · cmul 10153  cz 11589  mzPolycmzp 37805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-z 11590  df-mzpcl 37806  df-mzp 37807
This theorem is referenced by:  mzpsubmpt  37826  mzpexpmpt  37828  mzpsubst  37831  mzpcompact2lem  37834  diophun  37857  dvdsrabdioph  37894  rmydioph  38101  rmxdioph  38103  expdiophlem2  38109
  Copyright terms: Public domain W3C validator