Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpincl Structured version   Visualization version   GIF version

Theorem mzpincl 37799
Description: Polynomial closedness is a universal first-order property and passes to intersections. This is where the closure properties of the polynomial ring itself are proved. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpincl (𝑉 ∈ V → (mzPoly‘𝑉) ∈ (mzPolyCld‘𝑉))

Proof of Theorem mzpincl
Dummy variables 𝑓 𝑔 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mzpval 37797 . 2 (𝑉 ∈ V → (mzPoly‘𝑉) = (mzPolyCld‘𝑉))
2 mzpclall 37792 . . . . 5 (𝑉 ∈ V → (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∈ (mzPolyCld‘𝑉))
3 intss1 4644 . . . . 5 ((ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∈ (mzPolyCld‘𝑉) → (mzPolyCld‘𝑉) ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)))
42, 3syl 17 . . . 4 (𝑉 ∈ V → (mzPolyCld‘𝑉) ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)))
5 simpr 479 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → 𝑎 ∈ (mzPolyCld‘𝑉))
6 simplr 809 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → 𝑓 ∈ ℤ)
7 mzpcl1 37794 . . . . . . . . 9 ((𝑎 ∈ (mzPolyCld‘𝑉) ∧ 𝑓 ∈ ℤ) → ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ 𝑎)
85, 6, 7syl2anc 696 . . . . . . . 8 (((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ 𝑎)
98ralrimiva 3104 . . . . . . 7 ((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) → ∀𝑎 ∈ (mzPolyCld‘𝑉)((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ 𝑎)
10 ovex 6841 . . . . . . . . 9 (ℤ ↑𝑚 𝑉) ∈ V
11 snex 5057 . . . . . . . . 9 {𝑓} ∈ V
1210, 11xpex 7127 . . . . . . . 8 ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ V
1312elint2 4634 . . . . . . 7 (((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ 𝑎)
149, 13sylibr 224 . . . . . 6 ((𝑉 ∈ V ∧ 𝑓 ∈ ℤ) → ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉))
1514ralrimiva 3104 . . . . 5 (𝑉 ∈ V → ∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉))
16 simpr 479 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝑓𝑉) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → 𝑎 ∈ (mzPolyCld‘𝑉))
17 simplr 809 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝑓𝑉) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → 𝑓𝑉)
18 mzpcl2 37795 . . . . . . . . 9 ((𝑎 ∈ (mzPolyCld‘𝑉) ∧ 𝑓𝑉) → (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ 𝑎)
1916, 17, 18syl2anc 696 . . . . . . . 8 (((𝑉 ∈ V ∧ 𝑓𝑉) ∧ 𝑎 ∈ (mzPolyCld‘𝑉)) → (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ 𝑎)
2019ralrimiva 3104 . . . . . . 7 ((𝑉 ∈ V ∧ 𝑓𝑉) → ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ 𝑎)
2110mptex 6650 . . . . . . . 8 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ V
2221elint2 4634 . . . . . . 7 ((𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ 𝑎)
2320, 22sylibr 224 . . . . . 6 ((𝑉 ∈ V ∧ 𝑓𝑉) → (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉))
2423ralrimiva 3104 . . . . 5 (𝑉 ∈ V → ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉))
2515, 24jca 555 . . . 4 (𝑉 ∈ V → (∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉) ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉)))
26 vex 3343 . . . . . . . . 9 𝑓 ∈ V
2726elint2 4634 . . . . . . . 8 (𝑓 (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)𝑓𝑎)
28 vex 3343 . . . . . . . . 9 𝑔 ∈ V
2928elint2 4634 . . . . . . . 8 (𝑔 (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)𝑔𝑎)
30 mzpcl34 37796 . . . . . . . . . . 11 ((𝑎 ∈ (mzPolyCld‘𝑉) ∧ 𝑓𝑎𝑔𝑎) → ((𝑓𝑓 + 𝑔) ∈ 𝑎 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑎))
31303expib 1117 . . . . . . . . . 10 (𝑎 ∈ (mzPolyCld‘𝑉) → ((𝑓𝑎𝑔𝑎) → ((𝑓𝑓 + 𝑔) ∈ 𝑎 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑎)))
3231ralimia 3088 . . . . . . . . 9 (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓𝑎𝑔𝑎) → ∀𝑎 ∈ (mzPolyCld‘𝑉)((𝑓𝑓 + 𝑔) ∈ 𝑎 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑎))
33 r19.26 3202 . . . . . . . . 9 (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓𝑎𝑔𝑎) ↔ (∀𝑎 ∈ (mzPolyCld‘𝑉)𝑓𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)𝑔𝑎))
34 r19.26 3202 . . . . . . . . 9 (∀𝑎 ∈ (mzPolyCld‘𝑉)((𝑓𝑓 + 𝑔) ∈ 𝑎 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑎) ↔ (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓𝑓 + 𝑔) ∈ 𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓𝑓 · 𝑔) ∈ 𝑎))
3532, 33, 343imtr3i 280 . . . . . . . 8 ((∀𝑎 ∈ (mzPolyCld‘𝑉)𝑓𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)𝑔𝑎) → (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓𝑓 + 𝑔) ∈ 𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓𝑓 · 𝑔) ∈ 𝑎))
3627, 29, 35syl2anb 497 . . . . . . 7 ((𝑓 (mzPolyCld‘𝑉) ∧ 𝑔 (mzPolyCld‘𝑉)) → (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓𝑓 + 𝑔) ∈ 𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓𝑓 · 𝑔) ∈ 𝑎))
37 ovex 6841 . . . . . . . . 9 (𝑓𝑓 + 𝑔) ∈ V
3837elint2 4634 . . . . . . . 8 ((𝑓𝑓 + 𝑔) ∈ (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓𝑓 + 𝑔) ∈ 𝑎)
39 ovex 6841 . . . . . . . . 9 (𝑓𝑓 · 𝑔) ∈ V
4039elint2 4634 . . . . . . . 8 ((𝑓𝑓 · 𝑔) ∈ (mzPolyCld‘𝑉) ↔ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓𝑓 · 𝑔) ∈ 𝑎)
4138, 40anbi12i 735 . . . . . . 7 (((𝑓𝑓 + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓𝑓 · 𝑔) ∈ (mzPolyCld‘𝑉)) ↔ (∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓𝑓 + 𝑔) ∈ 𝑎 ∧ ∀𝑎 ∈ (mzPolyCld‘𝑉)(𝑓𝑓 · 𝑔) ∈ 𝑎))
4236, 41sylibr 224 . . . . . 6 ((𝑓 (mzPolyCld‘𝑉) ∧ 𝑔 (mzPolyCld‘𝑉)) → ((𝑓𝑓 + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓𝑓 · 𝑔) ∈ (mzPolyCld‘𝑉)))
4342a1i 11 . . . . 5 (𝑉 ∈ V → ((𝑓 (mzPolyCld‘𝑉) ∧ 𝑔 (mzPolyCld‘𝑉)) → ((𝑓𝑓 + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓𝑓 · 𝑔) ∈ (mzPolyCld‘𝑉))))
4443ralrimivv 3108 . . . 4 (𝑉 ∈ V → ∀𝑓 (mzPolyCld‘𝑉)∀𝑔 (mzPolyCld‘𝑉)((𝑓𝑓 + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓𝑓 · 𝑔) ∈ (mzPolyCld‘𝑉)))
454, 25, 44jca32 559 . . 3 (𝑉 ∈ V → ( (mzPolyCld‘𝑉) ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉) ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉)) ∧ ∀𝑓 (mzPolyCld‘𝑉)∀𝑔 (mzPolyCld‘𝑉)((𝑓𝑓 + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓𝑓 · 𝑔) ∈ (mzPolyCld‘𝑉)))))
46 elmzpcl 37791 . . 3 (𝑉 ∈ V → ( (mzPolyCld‘𝑉) ∈ (mzPolyCld‘𝑉) ↔ ( (mzPolyCld‘𝑉) ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ (mzPolyCld‘𝑉) ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ (mzPolyCld‘𝑉)) ∧ ∀𝑓 (mzPolyCld‘𝑉)∀𝑔 (mzPolyCld‘𝑉)((𝑓𝑓 + 𝑔) ∈ (mzPolyCld‘𝑉) ∧ (𝑓𝑓 · 𝑔) ∈ (mzPolyCld‘𝑉))))))
4745, 46mpbird 247 . 2 (𝑉 ∈ V → (mzPolyCld‘𝑉) ∈ (mzPolyCld‘𝑉))
481, 47eqeltrd 2839 1 (𝑉 ∈ V → (mzPoly‘𝑉) ∈ (mzPolyCld‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 2139  wral 3050  Vcvv 3340  wss 3715  {csn 4321   cint 4627  cmpt 4881   × cxp 5264  cfv 6049  (class class class)co 6813  𝑓 cof 7060  𝑚 cmap 8023   + caddc 10131   · cmul 10133  cz 11569  mzPolyCldcmzpcl 37786  mzPolycmzp 37787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-mzpcl 37788  df-mzp 37789
This theorem is referenced by:  mzpconst  37800  mzpproj  37802  mzpadd  37803  mzpmul  37804
  Copyright terms: Public domain W3C validator