MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvth Structured version   Visualization version   GIF version

Theorem mvth 23875
Description: The Mean Value Theorem. If 𝐹 is a real continuous function on [𝐴, 𝐵] which is differentiable on (𝐴, 𝐵), then there is some 𝑥 ∈ (𝐴, 𝐵) such that (ℝ D 𝐹)‘𝑥 is equal to the average slope over [𝐴, 𝐵]. This is Metamath 100 proof #75. (Contributed by Mario Carneiro, 1-Sep-2014.) (Proof shortened by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
mvth.a (𝜑𝐴 ∈ ℝ)
mvth.b (𝜑𝐵 ∈ ℝ)
mvth.lt (𝜑𝐴 < 𝐵)
mvth.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
mvth.d (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
Assertion
Ref Expression
mvth (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝜑,𝑥

Proof of Theorem mvth
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mvth.a . . 3 (𝜑𝐴 ∈ ℝ)
2 mvth.b . . 3 (𝜑𝐵 ∈ ℝ)
3 mvth.lt . . 3 (𝜑𝐴 < 𝐵)
4 mvth.f . . 3 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
5 mptresid 5566 . . . 4 (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧) = ( I ↾ (𝐴[,]𝐵))
6 iccssre 12369 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
71, 2, 6syl2anc 696 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
8 ax-resscn 10106 . . . . 5 ℝ ⊆ ℂ
9 cncfmptid 22837 . . . . 5 (((𝐴[,]𝐵) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧) ∈ ((𝐴[,]𝐵)–cn→ℝ))
107, 8, 9sylancl 697 . . . 4 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧) ∈ ((𝐴[,]𝐵)–cn→ℝ))
115, 10syl5eqelr 2808 . . 3 (𝜑 → ( I ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
12 mvth.d . . 3 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
135oveq2i 6776 . . . . . 6 (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧)) = (ℝ D ( I ↾ (𝐴[,]𝐵)))
14 reelprrecn 10141 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
1514a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
16 simpr 479 . . . . . . . 8 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
1716recnd 10181 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
18 1red 10168 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → 1 ∈ ℝ)
1915dvmptid 23840 . . . . . . 7 (𝜑 → (ℝ D (𝑧 ∈ ℝ ↦ 𝑧)) = (𝑧 ∈ ℝ ↦ 1))
20 eqid 2724 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2120tgioo2 22728 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
22 iccntr 22746 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
231, 2, 22syl2anc 696 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2415, 17, 18, 19, 7, 21, 20, 23dvmptres2 23845 . . . . . 6 (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧)) = (𝑧 ∈ (𝐴(,)𝐵) ↦ 1))
2513, 24syl5eqr 2772 . . . . 5 (𝜑 → (ℝ D ( I ↾ (𝐴[,]𝐵))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ 1))
2625dmeqd 5433 . . . 4 (𝜑 → dom (ℝ D ( I ↾ (𝐴[,]𝐵))) = dom (𝑧 ∈ (𝐴(,)𝐵) ↦ 1))
27 1ex 10148 . . . . 5 1 ∈ V
28 eqid 2724 . . . . 5 (𝑧 ∈ (𝐴(,)𝐵) ↦ 1) = (𝑧 ∈ (𝐴(,)𝐵) ↦ 1)
2927, 28dmmpti 6136 . . . 4 dom (𝑧 ∈ (𝐴(,)𝐵) ↦ 1) = (𝐴(,)𝐵)
3026, 29syl6eq 2774 . . 3 (𝜑 → dom (ℝ D ( I ↾ (𝐴[,]𝐵))) = (𝐴(,)𝐵))
311, 2, 3, 4, 11, 12, 30cmvth 23874 . 2 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)))
321rexrd 10202 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ*)
332rexrd 10202 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
341, 2, 3ltled 10298 . . . . . . . . . . 11 (𝜑𝐴𝐵)
35 ubicc2 12403 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
3632, 33, 34, 35syl3anc 1439 . . . . . . . . . 10 (𝜑𝐵 ∈ (𝐴[,]𝐵))
37 fvresi 6555 . . . . . . . . . 10 (𝐵 ∈ (𝐴[,]𝐵) → (( I ↾ (𝐴[,]𝐵))‘𝐵) = 𝐵)
3836, 37syl 17 . . . . . . . . 9 (𝜑 → (( I ↾ (𝐴[,]𝐵))‘𝐵) = 𝐵)
39 lbicc2 12402 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
4032, 33, 34, 39syl3anc 1439 . . . . . . . . . 10 (𝜑𝐴 ∈ (𝐴[,]𝐵))
41 fvresi 6555 . . . . . . . . . 10 (𝐴 ∈ (𝐴[,]𝐵) → (( I ↾ (𝐴[,]𝐵))‘𝐴) = 𝐴)
4240, 41syl 17 . . . . . . . . 9 (𝜑 → (( I ↾ (𝐴[,]𝐵))‘𝐴) = 𝐴)
4338, 42oveq12d 6783 . . . . . . . 8 (𝜑 → ((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) = (𝐵𝐴))
4443adantr 472 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) = (𝐵𝐴))
4544oveq1d 6780 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = ((𝐵𝐴) · ((ℝ D 𝐹)‘𝑥)))
4625fveq1d 6306 . . . . . . . . 9 (𝜑 → ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ 1)‘𝑥))
47 eqidd 2725 . . . . . . . . . 10 (𝑧 = 𝑥 → 1 = 1)
4847, 28, 27fvmpt3i 6401 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ 1)‘𝑥) = 1)
4946, 48sylan9eq 2778 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥) = 1)
5049oveq2d 6781 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((𝐹𝐵) − (𝐹𝐴)) · 1))
51 cncff 22818 . . . . . . . . . . . . 13 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
524, 51syl 17 . . . . . . . . . . . 12 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
5352, 36ffvelrnd 6475 . . . . . . . . . . 11 (𝜑 → (𝐹𝐵) ∈ ℝ)
5452, 40ffvelrnd 6475 . . . . . . . . . . 11 (𝜑 → (𝐹𝐴) ∈ ℝ)
5553, 54resubcld 10571 . . . . . . . . . 10 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ)
5655recnd 10181 . . . . . . . . 9 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
5756adantr 472 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
5857mulid1d 10170 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · 1) = ((𝐹𝐵) − (𝐹𝐴)))
5950, 58eqtrd 2758 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = ((𝐹𝐵) − (𝐹𝐴)))
6045, 59eqeq12d 2739 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) ↔ ((𝐵𝐴) · ((ℝ D 𝐹)‘𝑥)) = ((𝐹𝐵) − (𝐹𝐴))))
612, 1resubcld 10571 . . . . . . . 8 (𝜑 → (𝐵𝐴) ∈ ℝ)
6261recnd 10181 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℂ)
6362adantr 472 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐵𝐴) ∈ ℂ)
64 dvf 23791 . . . . . . . 8 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
6512feq2d 6144 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
6664, 65mpbii 223 . . . . . . 7 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
6766ffvelrnda 6474 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
681, 2posdifd 10727 . . . . . . . . 9 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
693, 68mpbid 222 . . . . . . . 8 (𝜑 → 0 < (𝐵𝐴))
7069gt0ne0d 10705 . . . . . . 7 (𝜑 → (𝐵𝐴) ≠ 0)
7170adantr 472 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐵𝐴) ≠ 0)
7257, 63, 67, 71divmuld 10936 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)) = ((ℝ D 𝐹)‘𝑥) ↔ ((𝐵𝐴) · ((ℝ D 𝐹)‘𝑥)) = ((𝐹𝐵) − (𝐹𝐴))))
7360, 72bitr4d 271 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) ↔ (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)) = ((ℝ D 𝐹)‘𝑥)))
74 eqcom 2731 . . . 4 ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) ↔ (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)))
75 eqcom 2731 . . . 4 (((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)) ↔ (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)) = ((ℝ D 𝐹)‘𝑥))
7673, 74, 753bitr4g 303 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) ↔ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴))))
7776rexbidva 3151 . 2 (𝜑 → (∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) ↔ ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴))))
7831, 77mpbid 222 1 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1596  wcel 2103  wne 2896  wrex 3015  wss 3680  {cpr 4287   class class class wbr 4760  cmpt 4837   I cid 5127  dom cdm 5218  ran crn 5219  cres 5220  wf 5997  cfv 6001  (class class class)co 6765  cc 10047  cr 10048  0cc0 10049  1c1 10050   · cmul 10054  *cxr 10186   < clt 10187  cle 10188  cmin 10379   / cdiv 10797  (,)cioo 12289  [,]cicc 12292  TopOpenctopn 16205  topGenctg 16221  fldccnfld 19869  intcnt 20944  cnccncf 22801   D cdv 23747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127  ax-addf 10128  ax-mulf 10129
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-om 7183  df-1st 7285  df-2nd 7286  df-supp 7416  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-ixp 8026  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fsupp 8392  df-fi 8433  df-sup 8464  df-inf 8465  df-oi 8531  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-z 11491  df-dec 11607  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-ioo 12293  df-ico 12295  df-icc 12296  df-fz 12441  df-fzo 12581  df-seq 12917  df-exp 12976  df-hash 13233  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-mulr 16078  df-starv 16079  df-sca 16080  df-vsca 16081  df-ip 16082  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-hom 16089  df-cco 16090  df-rest 16206  df-topn 16207  df-0g 16225  df-gsum 16226  df-topgen 16227  df-pt 16228  df-prds 16231  df-xrs 16285  df-qtop 16290  df-imas 16291  df-xps 16293  df-mre 16369  df-mrc 16370  df-acs 16372  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-submnd 17458  df-mulg 17663  df-cntz 17871  df-cmn 18316  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-fbas 19866  df-fg 19867  df-cnfld 19870  df-top 20822  df-topon 20839  df-topsp 20860  df-bases 20873  df-cld 20946  df-ntr 20947  df-cls 20948  df-nei 21025  df-lp 21063  df-perf 21064  df-cn 21154  df-cnp 21155  df-haus 21242  df-cmp 21313  df-tx 21488  df-hmeo 21681  df-fil 21772  df-fm 21864  df-flim 21865  df-flf 21866  df-xms 22247  df-ms 22248  df-tms 22249  df-cncf 22803  df-limc 23750  df-dv 23751
This theorem is referenced by:  dvlip  23876  c1liplem1  23879  dvgt0lem1  23885  dvcvx  23903  dvbdfbdioolem1  40563
  Copyright terms: Public domain W3C validator