![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mvrsval | Structured version Visualization version GIF version |
Description: The set of variables in an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mvrsval.v | ⊢ 𝑉 = (mVR‘𝑇) |
mvrsval.e | ⊢ 𝐸 = (mEx‘𝑇) |
mvrsval.w | ⊢ 𝑊 = (mVars‘𝑇) |
Ref | Expression |
---|---|
mvrsval | ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) = (ran (2nd ‘𝑋) ∩ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvrsval.w | . . 3 ⊢ 𝑊 = (mVars‘𝑇) | |
2 | elfvex 6382 | . . . . 5 ⊢ (𝑋 ∈ (mEx‘𝑇) → 𝑇 ∈ V) | |
3 | mvrsval.e | . . . . 5 ⊢ 𝐸 = (mEx‘𝑇) | |
4 | 2, 3 | eleq2s 2857 | . . . 4 ⊢ (𝑋 ∈ 𝐸 → 𝑇 ∈ V) |
5 | fveq2 6352 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇)) | |
6 | 5, 3 | syl6eqr 2812 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸) |
7 | fveq2 6352 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇)) | |
8 | mvrsval.v | . . . . . . . 8 ⊢ 𝑉 = (mVR‘𝑇) | |
9 | 7, 8 | syl6eqr 2812 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉) |
10 | 9 | ineq2d 3957 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (ran (2nd ‘𝑒) ∩ (mVR‘𝑡)) = (ran (2nd ‘𝑒) ∩ 𝑉)) |
11 | 6, 10 | mpteq12dv 4885 | . . . . 5 ⊢ (𝑡 = 𝑇 → (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd ‘𝑒) ∩ (mVR‘𝑡))) = (𝑒 ∈ 𝐸 ↦ (ran (2nd ‘𝑒) ∩ 𝑉))) |
12 | df-mvrs 31693 | . . . . 5 ⊢ mVars = (𝑡 ∈ V ↦ (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd ‘𝑒) ∩ (mVR‘𝑡)))) | |
13 | fvex 6362 | . . . . . . 7 ⊢ (mEx‘𝑇) ∈ V | |
14 | 3, 13 | eqeltri 2835 | . . . . . 6 ⊢ 𝐸 ∈ V |
15 | 14 | mptex 6650 | . . . . 5 ⊢ (𝑒 ∈ 𝐸 ↦ (ran (2nd ‘𝑒) ∩ 𝑉)) ∈ V |
16 | 11, 12, 15 | fvmpt 6444 | . . . 4 ⊢ (𝑇 ∈ V → (mVars‘𝑇) = (𝑒 ∈ 𝐸 ↦ (ran (2nd ‘𝑒) ∩ 𝑉))) |
17 | 4, 16 | syl 17 | . . 3 ⊢ (𝑋 ∈ 𝐸 → (mVars‘𝑇) = (𝑒 ∈ 𝐸 ↦ (ran (2nd ‘𝑒) ∩ 𝑉))) |
18 | 1, 17 | syl5eq 2806 | . 2 ⊢ (𝑋 ∈ 𝐸 → 𝑊 = (𝑒 ∈ 𝐸 ↦ (ran (2nd ‘𝑒) ∩ 𝑉))) |
19 | fveq2 6352 | . . . . 5 ⊢ (𝑒 = 𝑋 → (2nd ‘𝑒) = (2nd ‘𝑋)) | |
20 | 19 | rneqd 5508 | . . . 4 ⊢ (𝑒 = 𝑋 → ran (2nd ‘𝑒) = ran (2nd ‘𝑋)) |
21 | 20 | ineq1d 3956 | . . 3 ⊢ (𝑒 = 𝑋 → (ran (2nd ‘𝑒) ∩ 𝑉) = (ran (2nd ‘𝑋) ∩ 𝑉)) |
22 | 21 | adantl 473 | . 2 ⊢ ((𝑋 ∈ 𝐸 ∧ 𝑒 = 𝑋) → (ran (2nd ‘𝑒) ∩ 𝑉) = (ran (2nd ‘𝑋) ∩ 𝑉)) |
23 | id 22 | . 2 ⊢ (𝑋 ∈ 𝐸 → 𝑋 ∈ 𝐸) | |
24 | fvex 6362 | . . . . 5 ⊢ (2nd ‘𝑋) ∈ V | |
25 | 24 | rnex 7265 | . . . 4 ⊢ ran (2nd ‘𝑋) ∈ V |
26 | 25 | inex1 4951 | . . 3 ⊢ (ran (2nd ‘𝑋) ∩ 𝑉) ∈ V |
27 | 26 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝐸 → (ran (2nd ‘𝑋) ∩ 𝑉) ∈ V) |
28 | 18, 22, 23, 27 | fvmptd 6450 | 1 ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) = (ran (2nd ‘𝑋) ∩ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∩ cin 3714 ↦ cmpt 4881 ran crn 5267 ‘cfv 6049 2nd c2nd 7332 mVRcmvar 31665 mExcmex 31671 mVarscmvrs 31673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-mvrs 31693 |
This theorem is referenced by: mvrsfpw 31710 msubvrs 31764 |
Copyright terms: Public domain | W3C validator |