![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mvmulval | Structured version Visualization version GIF version |
Description: Multiplication of a vector with a matrix. (Contributed by AV, 23-Feb-2019.) |
Ref | Expression |
---|---|
mvmulfval.x | ⊢ × = (𝑅 maVecMul 〈𝑀, 𝑁〉) |
mvmulfval.b | ⊢ 𝐵 = (Base‘𝑅) |
mvmulfval.t | ⊢ · = (.r‘𝑅) |
mvmulfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
mvmulfval.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
mvmulfval.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mvmulval.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) |
mvmulval.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 𝑁)) |
Ref | Expression |
---|---|
mvmulval | ⊢ (𝜑 → (𝑋 × 𝑌) = (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvmulfval.x | . . 3 ⊢ × = (𝑅 maVecMul 〈𝑀, 𝑁〉) | |
2 | mvmulfval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | mvmulfval.t | . . 3 ⊢ · = (.r‘𝑅) | |
4 | mvmulfval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
5 | mvmulfval.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
6 | mvmulfval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
7 | 1, 2, 3, 4, 5, 6 | mvmulfval 20521 | . 2 ⊢ (𝜑 → × = (𝑥 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁)), 𝑦 ∈ (𝐵 ↑𝑚 𝑁) ↦ (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦‘𝑗))))))) |
8 | oveq 6807 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑖𝑥𝑗) = (𝑖𝑋𝑗)) | |
9 | fveq1 6339 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑦‘𝑗) = (𝑌‘𝑗)) | |
10 | 8, 9 | oveqan12d 6820 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑖𝑥𝑗) · (𝑦‘𝑗)) = ((𝑖𝑋𝑗) · (𝑌‘𝑗))) |
11 | 10 | adantl 473 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝑖𝑥𝑗) · (𝑦‘𝑗)) = ((𝑖𝑋𝑗) · (𝑌‘𝑗))) |
12 | 11 | mpteq2dv 4885 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦‘𝑗))) = (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) |
13 | 12 | oveq2d 6817 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦‘𝑗)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) |
14 | 13 | mpteq2dv 4885 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑦‘𝑗))))) = (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))))) |
15 | mvmulval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) | |
16 | mvmulval.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 𝑁)) | |
17 | mptexg 6636 | . . 3 ⊢ (𝑀 ∈ Fin → (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) ∈ V) | |
18 | 5, 17 | syl 17 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))))) ∈ V) |
19 | 7, 14, 15, 16, 18 | ovmpt2d 6941 | 1 ⊢ (𝜑 → (𝑋 × 𝑌) = (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1620 ∈ wcel 2127 Vcvv 3328 〈cop 4315 ↦ cmpt 4869 × cxp 5252 ‘cfv 6037 (class class class)co 6801 ↑𝑚 cmap 8011 Fincfn 8109 Basecbs 16030 .rcmulr 16115 Σg cgsu 16274 maVecMul cmvmul 20519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-1st 7321 df-2nd 7322 df-mvmul 20520 |
This theorem is referenced by: mvmulfv 20523 mavmulval 20524 |
Copyright terms: Public domain | W3C validator |