![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mvmulfv | Structured version Visualization version GIF version |
Description: A cell/element in the vector resulting from a multiplication of a vector with a matrix. (Contributed by AV, 23-Feb-2019.) |
Ref | Expression |
---|---|
mvmulfval.x | ⊢ × = (𝑅 maVecMul 〈𝑀, 𝑁〉) |
mvmulfval.b | ⊢ 𝐵 = (Base‘𝑅) |
mvmulfval.t | ⊢ · = (.r‘𝑅) |
mvmulfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
mvmulfval.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
mvmulfval.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mvmulval.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) |
mvmulval.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 𝑁)) |
mvmulfv.i | ⊢ (𝜑 → 𝐼 ∈ 𝑀) |
Ref | Expression |
---|---|
mvmulfv | ⊢ (𝜑 → ((𝑋 × 𝑌)‘𝐼) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvmulfval.x | . . 3 ⊢ × = (𝑅 maVecMul 〈𝑀, 𝑁〉) | |
2 | mvmulfval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | mvmulfval.t | . . 3 ⊢ · = (.r‘𝑅) | |
4 | mvmulfval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
5 | mvmulfval.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
6 | mvmulfval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
7 | mvmulval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) | |
8 | mvmulval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 𝑁)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mvmulval 20567 | . 2 ⊢ (𝜑 → (𝑋 × 𝑌) = (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))))) |
10 | oveq1 6803 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (𝑖𝑋𝑗) = (𝐼𝑋𝑗)) | |
11 | 10 | adantl 467 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → (𝑖𝑋𝑗) = (𝐼𝑋𝑗)) |
12 | 11 | oveq1d 6811 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → ((𝑖𝑋𝑗) · (𝑌‘𝑗)) = ((𝐼𝑋𝑗) · (𝑌‘𝑗))) |
13 | 12 | mpteq2dv 4880 | . . 3 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))) = (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗)))) |
14 | 13 | oveq2d 6812 | . 2 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗))))) |
15 | mvmulfv.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑀) | |
16 | ovexd 6829 | . 2 ⊢ (𝜑 → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗)))) ∈ V) | |
17 | 9, 14, 15, 16 | fvmptd 6432 | 1 ⊢ (𝜑 → ((𝑋 × 𝑌)‘𝐼) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 Vcvv 3351 〈cop 4323 ↦ cmpt 4864 × cxp 5248 ‘cfv 6030 (class class class)co 6796 ↑𝑚 cmap 8013 Fincfn 8113 Basecbs 16064 .rcmulr 16150 Σg cgsu 16309 maVecMul cmvmul 20564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-1st 7319 df-2nd 7320 df-mvmul 20565 |
This theorem is referenced by: mvmumamul1 20578 |
Copyright terms: Public domain | W3C validator |