Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvhfval Structured version   Visualization version   GIF version

Theorem mvhfval 31768
Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvhfval.v 𝑉 = (mVR‘𝑇)
mvhfval.y 𝑌 = (mType‘𝑇)
mvhfval.h 𝐻 = (mVH‘𝑇)
Assertion
Ref Expression
mvhfval 𝐻 = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
Distinct variable groups:   𝑣,𝑇   𝑣,𝑉   𝑣,𝑌
Allowed substitution hint:   𝐻(𝑣)

Proof of Theorem mvhfval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mvhfval.h . 2 𝐻 = (mVH‘𝑇)
2 fveq2 6332 . . . . . 6 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
3 mvhfval.v . . . . . 6 𝑉 = (mVR‘𝑇)
42, 3syl6eqr 2823 . . . . 5 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
5 fveq2 6332 . . . . . . . 8 (𝑡 = 𝑇 → (mType‘𝑡) = (mType‘𝑇))
6 mvhfval.y . . . . . . . 8 𝑌 = (mType‘𝑇)
75, 6syl6eqr 2823 . . . . . . 7 (𝑡 = 𝑇 → (mType‘𝑡) = 𝑌)
87fveq1d 6334 . . . . . 6 (𝑡 = 𝑇 → ((mType‘𝑡)‘𝑣) = (𝑌𝑣))
98opeq1d 4545 . . . . 5 (𝑡 = 𝑇 → ⟨((mType‘𝑡)‘𝑣), ⟨“𝑣”⟩⟩ = ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
104, 9mpteq12dv 4867 . . . 4 (𝑡 = 𝑇 → (𝑣 ∈ (mVR‘𝑡) ↦ ⟨((mType‘𝑡)‘𝑣), ⟨“𝑣”⟩⟩) = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩))
11 df-mvh 31727 . . . 4 mVH = (𝑡 ∈ V ↦ (𝑣 ∈ (mVR‘𝑡) ↦ ⟨((mType‘𝑡)‘𝑣), ⟨“𝑣”⟩⟩))
12 fvex 6342 . . . . . 6 (mVR‘𝑇) ∈ V
133, 12eqeltri 2846 . . . . 5 𝑉 ∈ V
1413mptex 6630 . . . 4 (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩) ∈ V
1510, 11, 14fvmpt 6424 . . 3 (𝑇 ∈ V → (mVH‘𝑇) = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩))
16 mpt0 6161 . . . . 5 (𝑣 ∈ ∅ ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩) = ∅
1716eqcomi 2780 . . . 4 ∅ = (𝑣 ∈ ∅ ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
18 fvprc 6326 . . . 4 𝑇 ∈ V → (mVH‘𝑇) = ∅)
19 fvprc 6326 . . . . . 6 𝑇 ∈ V → (mVR‘𝑇) = ∅)
203, 19syl5eq 2817 . . . . 5 𝑇 ∈ V → 𝑉 = ∅)
2120mpteq1d 4872 . . . 4 𝑇 ∈ V → (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩) = (𝑣 ∈ ∅ ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩))
2217, 18, 213eqtr4a 2831 . . 3 𝑇 ∈ V → (mVH‘𝑇) = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩))
2315, 22pm2.61i 176 . 2 (mVH‘𝑇) = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
241, 23eqtri 2793 1 𝐻 = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1631  wcel 2145  Vcvv 3351  c0 4063  cop 4322  cmpt 4863  cfv 6031  ⟨“cs1 13490  mVRcmvar 31696  mTypecmty 31697  mVHcmvh 31707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-mvh 31727
This theorem is referenced by:  mvhval  31769  mvhf  31793
  Copyright terms: Public domain W3C validator