Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvdco Structured version   Visualization version   GIF version

Theorem mvdco 17911
 Description: Composing two permutations moves at most the union of the points. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
mvdco dom ((𝐹𝐺) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I ))

Proof of Theorem mvdco
StepHypRef Expression
1 inundif 4079 . . . . . . . 8 ((𝐺 ∩ I ) ∪ (𝐺 ∖ I )) = 𝐺
21coeq2i 5315 . . . . . . 7 (𝐹 ∘ ((𝐺 ∩ I ) ∪ (𝐺 ∖ I ))) = (𝐹𝐺)
3 coundi 5674 . . . . . . 7 (𝐹 ∘ ((𝐺 ∩ I ) ∪ (𝐺 ∖ I ))) = ((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I )))
42, 3eqtr3i 2675 . . . . . 6 (𝐹𝐺) = ((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I )))
54difeq1i 3757 . . . . 5 ((𝐹𝐺) ∖ I ) = (((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I ))) ∖ I )
6 difundir 3913 . . . . 5 (((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I ))) ∖ I ) = (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
75, 6eqtri 2673 . . . 4 ((𝐹𝐺) ∖ I ) = (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
87dmeqi 5357 . . 3 dom ((𝐹𝐺) ∖ I ) = dom (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
9 dmun 5363 . . 3 dom (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I )) = (dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
108, 9eqtri 2673 . 2 dom ((𝐹𝐺) ∖ I ) = (dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
11 inss2 3867 . . . . . 6 (𝐺 ∩ I ) ⊆ I
12 coss2 5311 . . . . . 6 ((𝐺 ∩ I ) ⊆ I → (𝐹 ∘ (𝐺 ∩ I )) ⊆ (𝐹 ∘ I ))
1311, 12ax-mp 5 . . . . 5 (𝐹 ∘ (𝐺 ∩ I )) ⊆ (𝐹 ∘ I )
14 cocnvcnv1 5684 . . . . . . 7 (𝐹 ∘ I ) = (𝐹 ∘ I )
15 relcnv 5538 . . . . . . . 8 Rel 𝐹
16 coi1 5689 . . . . . . . 8 (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹)
1715, 16ax-mp 5 . . . . . . 7 (𝐹 ∘ I ) = 𝐹
1814, 17eqtr3i 2675 . . . . . 6 (𝐹 ∘ I ) = 𝐹
19 cnvcnvss 5624 . . . . . 6 𝐹𝐹
2018, 19eqsstri 3668 . . . . 5 (𝐹 ∘ I ) ⊆ 𝐹
2113, 20sstri 3645 . . . 4 (𝐹 ∘ (𝐺 ∩ I )) ⊆ 𝐹
22 ssdif 3778 . . . 4 ((𝐹 ∘ (𝐺 ∩ I )) ⊆ 𝐹 → ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ (𝐹 ∖ I ))
23 dmss 5355 . . . 4 (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ (𝐹 ∖ I ) → dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ dom (𝐹 ∖ I ))
2421, 22, 23mp2b 10 . . 3 dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ dom (𝐹 ∖ I )
25 difss 3770 . . . . 5 ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ (𝐹 ∘ (𝐺 ∖ I ))
26 dmss 5355 . . . . 5 (((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ (𝐹 ∘ (𝐺 ∖ I )) → dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ dom (𝐹 ∘ (𝐺 ∖ I )))
2725, 26ax-mp 5 . . . 4 dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ dom (𝐹 ∘ (𝐺 ∖ I ))
28 dmcoss 5417 . . . 4 dom (𝐹 ∘ (𝐺 ∖ I )) ⊆ dom (𝐺 ∖ I )
2927, 28sstri 3645 . . 3 dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ dom (𝐺 ∖ I )
30 unss12 3818 . . 3 ((dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ dom (𝐹 ∖ I ) ∧ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ dom (𝐺 ∖ I )) → (dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I )) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I )))
3124, 29, 30mp2an 708 . 2 (dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I )) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I ))
3210, 31eqsstri 3668 1 dom ((𝐹𝐺) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I ))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1523   ∖ cdif 3604   ∪ cun 3605   ∩ cin 3606   ⊆ wss 3607   I cid 5052  ◡ccnv 5142  dom cdm 5143   ∘ ccom 5147  Rel wrel 5148 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155 This theorem is referenced by:  f1omvdco2  17914  symgsssg  17933  symgfisg  17934  symggen  17936
 Copyright terms: Public domain W3C validator