MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mumullem2 Structured version   Visualization version   GIF version

Theorem mumullem2 25105
Description: Lemma for mumul 25106. The product of two coprime squarefree numbers is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
mumullem2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) ≠ 0)

Proof of Theorem mumullem2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 r19.26 3202 . . . 4 (∀𝑝 ∈ ℙ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1 ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1))
2 simpr 479 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
3 simpl1 1228 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
42, 3pccld 15757 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
54nn0red 11544 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℝ)
6 simpl2 1230 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℕ)
72, 6pccld 15757 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℕ0)
87nn0red 11544 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℝ)
9 1red 10247 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 1 ∈ ℝ)
10 le2add 10702 . . . . . . . 8 ((((𝑝 pCnt 𝐴) ∈ ℝ ∧ (𝑝 pCnt 𝐵) ∈ ℝ) ∧ (1 ∈ ℝ ∧ 1 ∈ ℝ)) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1)))
115, 8, 9, 9, 10syl22anc 1478 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1)))
12 ax-1ne0 10197 . . . . . . . . . . . 12 1 ≠ 0
13 simpl3 1232 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) = 1)
1413oveq2d 6829 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴 gcd 𝐵)) = (𝑝 pCnt 1))
153nnzd 11673 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
166nnzd 11673 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
17 pcgcd 15784 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑝 pCnt (𝐴 gcd 𝐵)) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
182, 15, 16, 17syl3anc 1477 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴 gcd 𝐵)) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
19 pc1 15762 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℙ → (𝑝 pCnt 1) = 0)
2019adantl 473 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 1) = 0)
2114, 18, 203eqtr3d 2802 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)) = 0)
22 ifid 4269 . . . . . . . . . . . . . . . 16 if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), 1, 1) = 1
23 ifeq12 4247 . . . . . . . . . . . . . . . 16 ((1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)) → if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), 1, 1) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
2422, 23syl5eqr 2808 . . . . . . . . . . . . . . 15 ((1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)) → 1 = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
2524eqeq1d 2762 . . . . . . . . . . . . . 14 ((1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)) → (1 = 0 ↔ if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)) = 0))
2621, 25syl5ibrcom 237 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)) → 1 = 0))
2726necon3ad 2945 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (1 ≠ 0 → ¬ (1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵))))
2812, 27mpi 20 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ¬ (1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)))
29 ax-1cn 10186 . . . . . . . . . . . . 13 1 ∈ ℂ
305recnd 10260 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℂ)
31 subeq0 10499 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (𝑝 pCnt 𝐴) ∈ ℂ) → ((1 − (𝑝 pCnt 𝐴)) = 0 ↔ 1 = (𝑝 pCnt 𝐴)))
3229, 30, 31sylancr 698 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((1 − (𝑝 pCnt 𝐴)) = 0 ↔ 1 = (𝑝 pCnt 𝐴)))
338recnd 10260 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℂ)
34 subeq0 10499 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (𝑝 pCnt 𝐵) ∈ ℂ) → ((1 − (𝑝 pCnt 𝐵)) = 0 ↔ 1 = (𝑝 pCnt 𝐵)))
3529, 33, 34sylancr 698 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((1 − (𝑝 pCnt 𝐵)) = 0 ↔ 1 = (𝑝 pCnt 𝐵)))
3632, 35anbi12d 749 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0) ↔ (1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵))))
3728, 36mtbird 314 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ¬ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))
3837adantr 472 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → ¬ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))
39 eqcom 2767 . . . . . . . . . . 11 ((1 + 1) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1))
40 1re 10231 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
4140, 40readdcli 10245 . . . . . . . . . . . . . . . . 17 (1 + 1) ∈ ℝ
4241recni 10244 . . . . . . . . . . . . . . . 16 (1 + 1) ∈ ℂ
434, 7nn0addcld 11547 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℕ0)
4443nn0red 11544 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℝ)
4544recnd 10260 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℂ)
46 subeq0 10499 . . . . . . . . . . . . . . . 16 (((1 + 1) ∈ ℂ ∧ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℂ) → (((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = 0 ↔ (1 + 1) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))))
4742, 45, 46sylancr 698 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = 0 ↔ (1 + 1) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))))
4847, 39syl6bb 276 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = 0 ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1)))
499recnd 10260 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 1 ∈ ℂ)
5049, 49, 30, 33addsub4d 10631 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = ((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))))
5150eqeq1d 2762 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0))
5248, 51bitr3d 270 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1) ↔ ((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0))
5352adantr 472 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1) ↔ ((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0))
54 subge0 10733 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ) → (0 ≤ (1 − (𝑝 pCnt 𝐴)) ↔ (𝑝 pCnt 𝐴) ≤ 1))
5540, 5, 54sylancr 698 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (0 ≤ (1 − (𝑝 pCnt 𝐴)) ↔ (𝑝 pCnt 𝐴) ≤ 1))
56 subge0 10733 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐵) ∈ ℝ) → (0 ≤ (1 − (𝑝 pCnt 𝐵)) ↔ (𝑝 pCnt 𝐵) ≤ 1))
5740, 8, 56sylancr 698 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (0 ≤ (1 − (𝑝 pCnt 𝐵)) ↔ (𝑝 pCnt 𝐵) ≤ 1))
5855, 57anbi12d 749 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((0 ≤ (1 − (𝑝 pCnt 𝐴)) ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵))) ↔ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)))
59 resubcl 10537 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ) → (1 − (𝑝 pCnt 𝐴)) ∈ ℝ)
6040, 5, 59sylancr 698 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (1 − (𝑝 pCnt 𝐴)) ∈ ℝ)
61 resubcl 10537 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐵) ∈ ℝ) → (1 − (𝑝 pCnt 𝐵)) ∈ ℝ)
6240, 8, 61sylancr 698 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (1 − (𝑝 pCnt 𝐵)) ∈ ℝ)
63 add20 10732 . . . . . . . . . . . . . . . . 17 ((((1 − (𝑝 pCnt 𝐴)) ∈ ℝ ∧ 0 ≤ (1 − (𝑝 pCnt 𝐴))) ∧ ((1 − (𝑝 pCnt 𝐵)) ∈ ℝ ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵)))) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
6463an4s 904 . . . . . . . . . . . . . . . 16 ((((1 − (𝑝 pCnt 𝐴)) ∈ ℝ ∧ (1 − (𝑝 pCnt 𝐵)) ∈ ℝ) ∧ (0 ≤ (1 − (𝑝 pCnt 𝐴)) ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵)))) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
6564ex 449 . . . . . . . . . . . . . . 15 (((1 − (𝑝 pCnt 𝐴)) ∈ ℝ ∧ (1 − (𝑝 pCnt 𝐵)) ∈ ℝ) → ((0 ≤ (1 − (𝑝 pCnt 𝐴)) ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵))) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))))
6660, 62, 65syl2anc 696 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((0 ≤ (1 − (𝑝 pCnt 𝐴)) ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵))) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))))
6758, 66sylbird 250 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))))
6867imp 444 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
6953, 68bitrd 268 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1) ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
7039, 69syl5bb 272 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → ((1 + 1) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
7170necon3abid 2968 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → ((1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ↔ ¬ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
7238, 71mpbird 247 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))
7372ex 449 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))))
7411, 73jcad 556 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1) ∧ (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))))
75 nnz 11591 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
76 nnne0 11245 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
7775, 76jca 555 . . . . . . . . . 10 (𝐴 ∈ ℕ → (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0))
783, 77syl 17 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0))
79 nnz 11591 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
80 nnne0 11245 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
8179, 80jca 555 . . . . . . . . . 10 (𝐵 ∈ ℕ → (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
826, 81syl 17 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
83 pcmul 15758 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt (𝐴 · 𝐵)) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))
842, 78, 82, 83syl3anc 1477 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴 · 𝐵)) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))
8584breq1d 4814 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (𝐴 · 𝐵)) ≤ 1 ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ 1))
86 1nn0 11500 . . . . . . . 8 1 ∈ ℕ0
87 nn0leltp1 11628 . . . . . . . 8 ((((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℕ0 ∧ 1 ∈ ℕ0) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ 1 ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) < (1 + 1)))
8843, 86, 87sylancl 697 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ 1 ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) < (1 + 1)))
89 ltlen 10330 . . . . . . . 8 ((((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℝ ∧ (1 + 1) ∈ ℝ) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) < (1 + 1) ↔ (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1) ∧ (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))))
9044, 41, 89sylancl 697 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) < (1 + 1) ↔ (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1) ∧ (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))))
9185, 88, 903bitrd 294 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (𝐴 · 𝐵)) ≤ 1 ↔ (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1) ∧ (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))))
9274, 91sylibrd 249 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
9392ralimdva 3100 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (∀𝑝 ∈ ℙ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → ∀𝑝 ∈ ℙ (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
941, 93syl5bir 233 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1 ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1) → ∀𝑝 ∈ ℙ (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
95 issqf 25061 . . . . 5 (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1))
96 issqf 25061 . . . . 5 (𝐵 ∈ ℕ → ((μ‘𝐵) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1))
9795, 96bi2anan9 953 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1 ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1)))
98973adant3 1127 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1 ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1)))
99 nnmulcl 11235 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)
100993adant3 1127 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 · 𝐵) ∈ ℕ)
101 issqf 25061 . . . 4 ((𝐴 · 𝐵) ∈ ℕ → ((μ‘(𝐴 · 𝐵)) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
102100, 101syl 17 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((μ‘(𝐴 · 𝐵)) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
10394, 98, 1023imtr4d 283 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0) → (μ‘(𝐴 · 𝐵)) ≠ 0))
104103imp 444 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  ifcif 4230   class class class wbr 4804  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   < clt 10266  cle 10267  cmin 10458  cn 11212  0cn0 11484  cz 11569   gcd cgcd 15418  cprime 15587   pCnt cpc 15743  μcmu 25020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-q 11982  df-rp 12026  df-fz 12520  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-dvds 15183  df-gcd 15419  df-prm 15588  df-pc 15744  df-mu 25026
This theorem is referenced by:  mumul  25106
  Copyright terms: Public domain W3C validator