![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mulvval | Structured version Visualization version GIF version |
Description: Value of the operation of scalar multiplication. (Contributed by Andrew Salmon, 27-Jan-2012.) |
Ref | Expression |
---|---|
mulvval | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) = (𝑣 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑣)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3364 | . 2 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
2 | elex 3364 | . 2 ⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) | |
3 | fveq1 6331 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦‘𝑣) = (𝐵‘𝑣)) | |
4 | oveq12 6802 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ (𝑦‘𝑣) = (𝐵‘𝑣)) → (𝑥 · (𝑦‘𝑣)) = (𝐴 · (𝐵‘𝑣))) | |
5 | 3, 4 | sylan2 580 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 · (𝑦‘𝑣)) = (𝐴 · (𝐵‘𝑣))) |
6 | 5 | mpteq2dv 4879 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑣 ∈ ℝ ↦ (𝑥 · (𝑦‘𝑣))) = (𝑣 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑣)))) |
7 | df-mulv 39194 | . . 3 ⊢ .𝑣 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ (𝑥 · (𝑦‘𝑣)))) | |
8 | reex 10229 | . . . 4 ⊢ ℝ ∈ V | |
9 | 8 | mptex 6630 | . . 3 ⊢ (𝑣 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑣))) ∈ V |
10 | 6, 7, 9 | ovmpt2a 6938 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴.𝑣𝐵) = (𝑣 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑣)))) |
11 | 1, 2, 10 | syl2an 583 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) = (𝑣 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑣)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 Vcvv 3351 ↦ cmpt 4863 ‘cfv 6031 (class class class)co 6793 ℝcr 10137 · cmul 10143 .𝑣ctimesr 39188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pr 5034 ax-cnex 10194 ax-resscn 10195 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-mulv 39194 |
This theorem is referenced by: mulvfv 39200 mulvfn 39203 |
Copyright terms: Public domain | W3C validator |