MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulre Structured version   Visualization version   GIF version

Theorem mulre 14069
Description: A product with a nonzero real multiplier is real iff the multiplicand is real. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
mulre ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℝ ↔ (𝐵 · 𝐴) ∈ ℝ))

Proof of Theorem mulre
StepHypRef Expression
1 rereb 14068 . . 3 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴))
213ad2ant1 1127 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴))
3 recl 14058 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
43recnd 10270 . . . 4 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
543ad2ant1 1127 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℜ‘𝐴) ∈ ℂ)
6 simp1 1130 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℂ)
7 recn 10228 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
87anim1i 602 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
983adant1 1124 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
10 mulcan 10866 . . 3 (((ℜ‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (ℜ‘𝐴) = 𝐴))
115, 6, 9, 10syl3anc 1476 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (ℜ‘𝐴) = 𝐴))
127adantr 466 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → 𝐵 ∈ ℂ)
134adantl 467 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (ℜ‘𝐴) ∈ ℂ)
14 ax-icn 10197 . . . . . . . . . . . 12 i ∈ ℂ
15 imcl 14059 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
1615recnd 10270 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
17 mulcl 10222 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
1814, 16, 17sylancr 575 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
1918adantl 467 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
2012, 13, 19adddid 10266 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((𝐵 · (ℜ‘𝐴)) + (𝐵 · (i · (ℑ‘𝐴)))))
21 replim 14064 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
2221adantl 467 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
2322oveq2d 6809 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · 𝐴) = (𝐵 · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
24 mul12 10404 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (𝐵 · (ℑ‘𝐴))) = (𝐵 · (i · (ℑ‘𝐴))))
2514, 24mp3an1 1559 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (𝐵 · (ℑ‘𝐴))) = (𝐵 · (i · (ℑ‘𝐴))))
267, 16, 25syl2an 583 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (i · (𝐵 · (ℑ‘𝐴))) = (𝐵 · (i · (ℑ‘𝐴))))
2726oveq2d 6809 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → ((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴)))) = ((𝐵 · (ℜ‘𝐴)) + (𝐵 · (i · (ℑ‘𝐴)))))
2820, 23, 273eqtr4d 2815 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · 𝐴) = ((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴)))))
2928fveq2d 6336 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (ℜ‘(𝐵 · 𝐴)) = (ℜ‘((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴))))))
30 remulcl 10223 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (𝐵 · (ℜ‘𝐴)) ∈ ℝ)
313, 30sylan2 580 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · (ℜ‘𝐴)) ∈ ℝ)
32 remulcl 10223 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (𝐵 · (ℑ‘𝐴)) ∈ ℝ)
3315, 32sylan2 580 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · (ℑ‘𝐴)) ∈ ℝ)
34 crre 14062 . . . . . . . 8 (((𝐵 · (ℜ‘𝐴)) ∈ ℝ ∧ (𝐵 · (ℑ‘𝐴)) ∈ ℝ) → (ℜ‘((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴))))) = (𝐵 · (ℜ‘𝐴)))
3531, 33, 34syl2anc 573 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (ℜ‘((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴))))) = (𝐵 · (ℜ‘𝐴)))
3629, 35eqtr2d 2806 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · (ℜ‘𝐴)) = (ℜ‘(𝐵 · 𝐴)))
3736eqeq1d 2773 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (ℜ‘(𝐵 · 𝐴)) = (𝐵 · 𝐴)))
38 mulcl 10222 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 · 𝐴) ∈ ℂ)
397, 38sylan 569 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · 𝐴) ∈ ℂ)
40 rereb 14068 . . . . . 6 ((𝐵 · 𝐴) ∈ ℂ → ((𝐵 · 𝐴) ∈ ℝ ↔ (ℜ‘(𝐵 · 𝐴)) = (𝐵 · 𝐴)))
4139, 40syl 17 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → ((𝐵 · 𝐴) ∈ ℝ ↔ (ℜ‘(𝐵 · 𝐴)) = (𝐵 · 𝐴)))
4237, 41bitr4d 271 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (𝐵 · 𝐴) ∈ ℝ))
4342ancoms 455 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (𝐵 · 𝐴) ∈ ℝ))
44433adant3 1126 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (𝐵 · 𝐴) ∈ ℝ))
452, 11, 443bitr2d 296 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℝ ↔ (𝐵 · 𝐴) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  cfv 6031  (class class class)co 6793  cc 10136  cr 10137  0cc0 10138  ici 10140   + caddc 10141   · cmul 10143  cre 14045  cim 14046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-2 11281  df-cj 14047  df-re 14048  df-im 14049
This theorem is referenced by:  sineq0  24494  sineq0ALT  39695
  Copyright terms: Public domain W3C validator