![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulpiord | Structured version Visualization version GIF version |
Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·𝑜 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5288 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 〈𝐴, 𝐵〉 ∈ (N × N)) | |
2 | fvres 6348 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (( ·𝑜 ↾ (N × N))‘〈𝐴, 𝐵〉) = ( ·𝑜 ‘〈𝐴, 𝐵〉)) | |
3 | df-ov 6795 | . . . 4 ⊢ (𝐴 ·N 𝐵) = ( ·N ‘〈𝐴, 𝐵〉) | |
4 | df-mi 9897 | . . . . 5 ⊢ ·N = ( ·𝑜 ↾ (N × N)) | |
5 | 4 | fveq1i 6333 | . . . 4 ⊢ ( ·N ‘〈𝐴, 𝐵〉) = (( ·𝑜 ↾ (N × N))‘〈𝐴, 𝐵〉) |
6 | 3, 5 | eqtri 2792 | . . 3 ⊢ (𝐴 ·N 𝐵) = (( ·𝑜 ↾ (N × N))‘〈𝐴, 𝐵〉) |
7 | df-ov 6795 | . . 3 ⊢ (𝐴 ·𝑜 𝐵) = ( ·𝑜 ‘〈𝐴, 𝐵〉) | |
8 | 2, 6, 7 | 3eqtr4g 2829 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (𝐴 ·N 𝐵) = (𝐴 ·𝑜 𝐵)) |
9 | 1, 8 | syl 17 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·𝑜 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 〈cop 4320 × cxp 5247 ↾ cres 5251 ‘cfv 6031 (class class class)co 6792 ·𝑜 comu 7710 Ncnpi 9867 ·N cmi 9869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-xp 5255 df-res 5261 df-iota 5994 df-fv 6039 df-ov 6795 df-mi 9897 |
This theorem is referenced by: mulidpi 9909 mulclpi 9916 mulcompi 9919 mulasspi 9920 distrpi 9921 mulcanpi 9923 ltmpi 9927 |
Copyright terms: Public domain | W3C validator |