Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulnqf Structured version   Visualization version   GIF version

Theorem mulnqf 9756
 Description: Domain of multiplication on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
mulnqf ·Q :(Q × Q)⟶Q

Proof of Theorem mulnqf
StepHypRef Expression
1 nqerf 9737 . . . 4 [Q]:(N × N)⟶Q
2 mulpqf 9753 . . . 4 ·pQ :((N × N) × (N × N))⟶(N × N)
3 fco 6045 . . . 4 (([Q]:(N × N)⟶Q ∧ ·pQ :((N × N) × (N × N))⟶(N × N)) → ([Q] ∘ ·pQ ):((N × N) × (N × N))⟶Q)
41, 2, 3mp2an 707 . . 3 ([Q] ∘ ·pQ ):((N × N) × (N × N))⟶Q
5 elpqn 9732 . . . . 5 (𝑥Q𝑥 ∈ (N × N))
65ssriv 3599 . . . 4 Q ⊆ (N × N)
7 xpss12 5215 . . . 4 ((Q ⊆ (N × N) ∧ Q ⊆ (N × N)) → (Q × Q) ⊆ ((N × N) × (N × N)))
86, 6, 7mp2an 707 . . 3 (Q × Q) ⊆ ((N × N) × (N × N))
9 fssres 6057 . . 3 ((([Q] ∘ ·pQ ):((N × N) × (N × N))⟶Q ∧ (Q × Q) ⊆ ((N × N) × (N × N))) → (([Q] ∘ ·pQ ) ↾ (Q × Q)):(Q × Q)⟶Q)
104, 8, 9mp2an 707 . 2 (([Q] ∘ ·pQ ) ↾ (Q × Q)):(Q × Q)⟶Q
11 df-mq 9722 . . 3 ·Q = (([Q] ∘ ·pQ ) ↾ (Q × Q))
1211feq1i 6023 . 2 ( ·Q :(Q × Q)⟶Q ↔ (([Q] ∘ ·pQ ) ↾ (Q × Q)):(Q × Q)⟶Q)
1310, 12mpbir 221 1 ·Q :(Q × Q)⟶Q
 Colors of variables: wff setvar class Syntax hints:   ⊆ wss 3567   × cxp 5102   ↾ cres 5106   ∘ ccom 5108  ⟶wf 5872  Ncnpi 9651   ·pQ cmpq 9656  Qcnq 9659  [Q]cerq 9661   ·Q cmq 9663 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-omul 7550  df-er 7727  df-ni 9679  df-mi 9681  df-lti 9682  df-mpq 9716  df-enq 9718  df-nq 9719  df-erq 9720  df-mq 9722  df-1nq 9723 This theorem is referenced by:  mulcomnq  9760  mulerpq  9764  mulassnq  9766  distrnq  9768  recmulnq  9771  recclnq  9773  dmrecnq  9775  ltmnq  9779  prlem936  9854
 Copyright terms: Public domain W3C validator