![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulneg1d | Structured version Visualization version GIF version |
Description: Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mulm1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
mulnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
mulneg1d | ⊢ (𝜑 → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mulnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | mulneg1 10579 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) | |
4 | 1, 2, 3 | syl2anc 696 | 1 ⊢ (𝜑 → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1596 ∈ wcel 2103 (class class class)co 6765 ℂcc 10047 · cmul 10054 -cneg 10380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-po 5139 df-so 5140 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-pnf 10189 df-mnf 10190 df-ltxr 10192 df-sub 10381 df-neg 10382 |
This theorem is referenced by: divsubdiv 10854 recgt0 10980 xmulneg1 12213 expmulz 13021 discr1 13115 iseraltlem3 14534 incexclem 14688 incexc 14689 mulgass 17701 cphipval 23163 mbfmulc2lem 23534 mbfmulc2 23550 itg2monolem1 23637 itgmulc2 23720 dvrecg 23856 dvmptdiv 23857 dvexp3 23861 dvfsumlem2 23910 aaliou3lem2 24218 advlogexp 24521 logtayl2 24528 dcubic2 24691 dcubic 24693 ftalem5 24923 lgsdilem 25169 2sqlem4 25266 pntrsumo1 25374 pntrlog2bndlem4 25389 brbtwn2 25905 colinearalglem4 25909 axeuclidlem 25962 logdivsqrle 30958 fwddifnp1 32499 itgmulc2nc 33710 pellexlem6 37817 jm2.19lem1 37975 jm2.19lem4 37978 jm2.19 37979 binomcxplemnotnn0 38974 sineq0ALT 39589 mulltgt0 39597 fperiodmul 39934 cosknegpi 40500 itgsinexplem1 40589 stoweidlem13 40650 stoweidlem42 40679 fourierdlem39 40783 fourierdlem41 40785 fourierdlem48 40791 fourierdlem49 40792 fourierdlem64 40807 etransclem46 40917 |
Copyright terms: Public domain | W3C validator |