![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulm1i | Structured version Visualization version GIF version |
Description: Product with minus one is negative. (Contributed by NM, 31-Jul-1999.) |
Ref | Expression |
---|---|
mulm1.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
mulm1i | ⊢ (-1 · 𝐴) = -𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mulm1 10684 | . 2 ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (-1 · 𝐴) = -𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2140 (class class class)co 6815 ℂcc 10147 1c1 10150 · cmul 10154 -cneg 10480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-po 5188 df-so 5189 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-ltxr 10292 df-sub 10481 df-neg 10482 |
This theorem is referenced by: i3 13181 evpmodpmf1o 20165 efif1olem2 24510 logf1o2 24617 tanatan 24867 lgsneg 25267 lgsdilem 25270 lgsdir2lem5 25275 ipval3 27895 ipasslem10 28025 normlem0 28297 normlem9 28306 polid2i 28345 quad3 31893 cosnegpi 40600 sqwvfoura 40967 |
Copyright terms: Public domain | W3C validator |