![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulm1d | Structured version Visualization version GIF version |
Description: Product with minus one is negative. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mulm1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
mulm1d | ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mulm1 10683 | . 2 ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 (class class class)co 6814 ℂcc 10146 1c1 10149 · cmul 10153 -cneg 10479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-ltxr 10291 df-sub 10480 df-neg 10481 |
This theorem is referenced by: recextlem1 10869 ofnegsub 11230 modnegd 12939 modsumfzodifsn 12957 m1expcl2 13096 remullem 14087 sqrtneglem 14226 iseraltlem2 14632 iseraltlem3 14633 fsumneg 14738 incexclem 14787 incexc 14788 risefallfac 14974 efi4p 15086 cosadd 15114 absefib 15147 efieq1re 15148 pwp1fsum 15336 bitsinv1lem 15385 bezoutlem1 15478 pythagtriplem4 15746 negcncf 22942 mbfneg 23636 itg1sub 23695 itgcnlem 23775 i1fibl 23793 itgitg1 23794 itgmulc2 23819 dvmptneg 23948 dvlipcn 23976 lhop2 23997 logneg 24554 lognegb 24556 tanarg 24585 logtayl 24626 logtayl2 24628 asinlem 24815 asinlem2 24816 asinsin 24839 efiatan2 24864 2efiatan 24865 atandmtan 24867 atantan 24870 atans2 24878 dvatan 24882 basellem5 25031 lgsdir2lem4 25273 gausslemma2dlem5a 25315 lgseisenlem1 25320 lgseisenlem2 25321 rpvmasum2 25421 ostth3 25547 smcnlem 27882 ipval2 27892 dipsubdir 28033 his2sub 28279 qqhval2lem 30355 fwddifnp1 32599 itgmulc2nc 33809 ftc1anclem5 33820 areacirclem1 33831 mzpsubmpt 37826 rmym1 38020 rngunsnply 38263 expgrowth 39054 isumneg 40355 climneg 40363 stoweidlem22 40760 stirlinglem5 40816 fourierdlem97 40941 sqwvfourb 40967 etransclem46 41018 smfneg 41534 sharhght 41578 sigaradd 41579 altgsumbcALT 42659 |
Copyright terms: Public domain | W3C validator |