![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mulltgt0 | Structured version Visualization version GIF version |
Description: The product of a negative and a positive number is negative. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
mulltgt0 | ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 · 𝐵) < 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl 10545 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
2 | 1 | ad2antrr 697 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → -𝐴 ∈ ℝ) |
3 | lt0neg1 10735 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴)) | |
4 | 3 | biimpa 462 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 < -𝐴) |
5 | 4 | adantr 466 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < -𝐴) |
6 | simpr 471 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
7 | mulgt0 10316 | . . . 4 ⊢ (((-𝐴 ∈ ℝ ∧ 0 < -𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (-𝐴 · 𝐵)) | |
8 | 2, 5, 6, 7 | syl21anc 1474 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (-𝐴 · 𝐵)) |
9 | recn 10227 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
10 | 9 | ad2antrr 697 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 𝐴 ∈ ℂ) |
11 | recn 10227 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
12 | 11 | ad2antrl 699 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 𝐵 ∈ ℂ) |
13 | 10, 12 | mulneg1d 10684 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
14 | 8, 13 | breqtrd 4810 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < -(𝐴 · 𝐵)) |
15 | remulcl 10222 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
16 | 15 | ad2ant2r 733 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 · 𝐵) ∈ ℝ) |
17 | 16 | lt0neg1d 10798 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 · 𝐵) < 0 ↔ 0 < -(𝐴 · 𝐵))) |
18 | 14, 17 | mpbird 247 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 · 𝐵) < 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2144 class class class wbr 4784 (class class class)co 6792 ℂcc 10135 ℝcr 10136 0cc0 10137 · cmul 10142 < clt 10275 -cneg 10468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 |
This theorem is referenced by: stoweidlem26 40754 stirlinglem5 40806 |
Copyright terms: Public domain | W3C validator |