![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulid2i | Structured version Visualization version GIF version |
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
mulid2i | ⊢ (1 · 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mulid2 10076 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (1 · 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 (class class class)co 6690 ℂcc 9972 1c1 9975 · cmul 9979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-mulcl 10036 ax-mulcom 10038 ax-mulass 10040 ax-distr 10041 ax-1rid 10044 ax-cnre 10047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-iota 5889 df-fv 5934 df-ov 6693 |
This theorem is referenced by: 00id 10249 halfpm6th 11291 div4p1lem1div2 11325 3halfnz 11494 crreczi 13029 sq10 13088 fac2 13106 hashxplem 13258 bpoly1 14826 bpoly2 14832 bpoly3 14833 bpoly4 14834 efival 14926 ef01bndlem 14958 3dvdsdec 15101 3dvdsdecOLD 15102 3dvds2dec 15103 3dvds2decOLD 15104 odd2np1lem 15111 m1expo 15139 m1exp1 15140 nno 15145 divalglem5 15167 gcdaddmlem 15292 prmo2 15791 dec5nprm 15817 2exp8 15843 13prm 15870 23prm 15873 37prm 15875 43prm 15876 83prm 15877 139prm 15878 163prm 15879 317prm 15880 631prm 15881 1259lem2 15886 1259lem3 15887 1259lem4 15888 1259lem5 15889 2503lem1 15891 2503lem2 15892 2503lem3 15893 2503prm 15894 4001lem1 15895 4001lem2 15896 4001lem3 15897 4001lem4 15898 cnmsgnsubg 19971 sin2pim 24282 cos2pim 24283 sincosq3sgn 24297 sincosq4sgn 24298 tangtx 24302 sincosq1eq 24309 sincos4thpi 24310 sincos6thpi 24312 pige3 24314 abssinper 24315 ang180lem2 24585 ang180lem3 24586 1cubr 24614 asin1 24666 dvatan 24707 log2cnv 24716 log2ublem3 24720 log2ub 24721 logfacbnd3 24993 bclbnd 25050 bpos1 25053 bposlem8 25061 lgsdilem 25094 lgsdir2lem1 25095 lgsdir2lem4 25098 lgsdir2lem5 25099 lgsdir2 25100 lgsdir 25102 2lgsoddprmlem3c 25182 dchrisum0flblem1 25242 rpvmasum2 25246 log2sumbnd 25278 ax5seglem7 25860 ex-fl 27434 ipasslem10 27822 hisubcomi 28089 normlem1 28095 normlem9 28103 norm-ii-i 28122 normsubi 28126 polid2i 28142 lnophmlem2 29004 lnfn0i 29029 nmopcoi 29082 unierri 29091 addltmulALT 29433 dpmul4 29750 sgnmul 30732 logdivsqrle 30856 hgt750lem 30857 hgt750lem2 30858 problem4 31688 quad3 31690 cnndvlem1 32653 sin2h 33529 poimirlem26 33565 cntotbnd 33725 areaquad 38119 coskpi2 40395 stoweidlem13 40548 wallispilem2 40601 wallispilem4 40603 wallispi2lem1 40606 dirkerper 40631 dirkertrigeqlem1 40633 dirkercncflem1 40638 sqwvfoura 40763 sqwvfourb 40764 fourierswlem 40765 fouriersw 40766 257prm 41798 fmtnofac1 41807 fmtno4prmfac 41809 fmtno4nprmfac193 41811 fmtno5faclem1 41816 fmtno5faclem2 41817 139prmALT 41836 127prm 41840 tgoldbach 42030 tgoldbachOLD 42037 |
Copyright terms: Public domain | W3C validator |