![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulid2 | Structured version Visualization version GIF version |
Description: Identity law for multiplication. Note: see mulid1 10229 for commuted version. (Contributed by NM, 8-Oct-1999.) |
Ref | Expression |
---|---|
mulid2 | ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10186 | . . 3 ⊢ 1 ∈ ℂ | |
2 | mulcom 10214 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = (𝐴 · 1)) | |
3 | 1, 2 | mpan 708 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = (𝐴 · 1)) |
4 | mulid1 10229 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
5 | 3, 4 | eqtrd 2794 | 1 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 (class class class)co 6813 ℂcc 10126 1c1 10129 · cmul 10133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-mulcl 10190 ax-mulcom 10192 ax-mulass 10194 ax-distr 10195 ax-1rid 10198 ax-cnre 10201 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-iota 6012 df-fv 6057 df-ov 6816 |
This theorem is referenced by: mulid2i 10235 mulid2d 10250 muladd11 10398 1p1times 10399 mul02lem1 10404 cnegex2 10410 mulm1 10663 div1 10908 recdiv 10923 divdiv2 10929 conjmul 10934 ser1const 13051 expp1 13061 recan 14275 arisum 14791 geo2sum 14803 prodrblem 14858 prodmolem2a 14863 risefac1 14963 fallfac1 14964 bpoly3 14988 bpoly4 14989 sinhval 15083 coshval 15084 demoivreALT 15130 gcdadd 15449 gcdid 15450 cncrng 19969 cnfld1 19973 cnfldmulg 19980 blcvx 22802 icccvx 22950 cnlmod 23140 coeidp 24218 dgrid 24219 quartlem1 24783 asinsinlem 24817 asinsin 24818 atantan 24849 musumsum 25117 brbtwn2 25984 axsegconlem1 25996 ax5seglem1 26007 ax5seglem2 26008 ax5seglem4 26011 ax5seglem5 26012 axeuclid 26042 axcontlem2 26044 axcontlem4 26046 cncvcOLD 27747 subdivcomb2 31919 dvcosax 40644 |
Copyright terms: Public domain | W3C validator |