![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulid1i | Structured version Visualization version GIF version |
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
mulid1i | ⊢ (𝐴 · 1) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mulid1 10229 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 1) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 (class class class)co 6813 ℂcc 10126 1c1 10129 · cmul 10133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-mulcl 10190 ax-mulcom 10192 ax-mulass 10194 ax-distr 10195 ax-1rid 10198 ax-cnre 10201 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-iota 6012 df-fv 6057 df-ov 6816 |
This theorem is referenced by: addid1 10408 0lt1 10742 muleqadd 10863 1t1e1 11367 2t1e2 11368 3t1e3 11370 halfpm6th 11445 9p1e10 11688 numltc 11720 numsucc 11741 dec10p 11745 dec10pOLD 11746 numadd 11752 numaddc 11753 11multnc 11784 4t3lem 11823 5t2e10 11826 9t11e99 11863 9t11e99OLD 11864 nn0opthlem1 13249 faclbnd4lem1 13274 rei 14095 imi 14096 cji 14098 sqrtm1 14215 0.999... 14811 0.999...OLD 14812 efival 15081 ef01bndlem 15113 3lcm2e6 15642 decsplit0b 15986 decsplit0bOLD 15990 2exp8 15998 37prm 16030 43prm 16031 83prm 16032 139prm 16033 163prm 16034 317prm 16035 1259lem1 16040 1259lem2 16041 1259lem3 16042 1259lem4 16043 1259lem5 16044 2503lem1 16046 2503lem2 16047 2503prm 16049 4001lem1 16050 4001lem2 16051 4001lem3 16052 cnmsgnsubg 20125 mdetralt 20616 dveflem 23941 dvsincos 23943 efhalfpi 24422 pige3 24468 cosne0 24475 efif1olem4 24490 logf1o2 24595 asin1 24820 dvatan 24861 log2ublem3 24874 log2ub 24875 birthday 24880 basellem9 25014 ppiub 25128 chtub 25136 bposlem8 25215 lgsdir2 25254 mulog2sumlem2 25423 pntlemb 25485 avril1 27630 ipidsq 27874 nmopadjlem 29257 nmopcoadji 29269 unierri 29272 sgnmul 30913 signswch 30947 itgexpif 30993 reprlt 31006 breprexp 31020 hgt750lem 31038 hgt750lem2 31039 circum 31875 dvasin 33809 inductionexd 38955 xralrple3 40088 wallispi 40790 wallispi2lem2 40792 stirlinglem1 40794 dirkertrigeqlem3 40820 257prm 41983 fmtno4prmfac193 41995 fmtno5fac 42004 139prmALT 42021 127prm 42025 |
Copyright terms: Public domain | W3C validator |