MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgt1 Structured version   Visualization version   GIF version

Theorem mulgt1 10995
Description: The product of two numbers greater than 1 is greater than 1. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
mulgt1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → 1 < (𝐴 · 𝐵))

Proof of Theorem mulgt1
StepHypRef Expression
1 simpl 474 . . . . 5 ((1 < 𝐴 ∧ 1 < 𝐵) → 1 < 𝐴)
21a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → 1 < 𝐴))
3 0lt1 10663 . . . . . . . . 9 0 < 1
4 0re 10153 . . . . . . . . . 10 0 ∈ ℝ
5 1re 10152 . . . . . . . . . 10 1 ∈ ℝ
6 lttr 10227 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
74, 5, 6mp3an12 1527 . . . . . . . . 9 (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
83, 7mpani 714 . . . . . . . 8 (𝐴 ∈ ℝ → (1 < 𝐴 → 0 < 𝐴))
98adantr 472 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐴 → 0 < 𝐴))
10 ltmul2 10987 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < 𝐵 ↔ (𝐴 · 1) < (𝐴 · 𝐵)))
1110biimpd 219 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵)))
125, 11mp3an1 1524 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵)))
1312exp32 632 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → (0 < 𝐴 → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵)))))
1413impcom 445 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵))))
159, 14syld 47 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐴 → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵))))
1615impd 446 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → (𝐴 · 1) < (𝐴 · 𝐵)))
17 ax-1rid 10119 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
1817adantr 472 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 1) = 𝐴)
1918breq1d 4770 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 1) < (𝐴 · 𝐵) ↔ 𝐴 < (𝐴 · 𝐵)))
2016, 19sylibd 229 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → 𝐴 < (𝐴 · 𝐵)))
212, 20jcad 556 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → (1 < 𝐴𝐴 < (𝐴 · 𝐵))))
22 remulcl 10134 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
23 lttr 10227 . . . . 5 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → ((1 < 𝐴𝐴 < (𝐴 · 𝐵)) → 1 < (𝐴 · 𝐵)))
245, 23mp3an1 1524 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → ((1 < 𝐴𝐴 < (𝐴 · 𝐵)) → 1 < (𝐴 · 𝐵)))
2522, 24syldan 488 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴𝐴 < (𝐴 · 𝐵)) → 1 < (𝐴 · 𝐵)))
2621, 25syld 47 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → 1 < (𝐴 · 𝐵)))
2726imp 444 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → 1 < (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1596  wcel 2103   class class class wbr 4760  (class class class)co 6765  cr 10048  0cc0 10049  1c1 10050   · cmul 10054   < clt 10187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-po 5139  df-so 5140  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382
This theorem is referenced by:  mulgt1d  11073  addltmul  11381  uz2mulcl  11880  addltmulALT  29535
  Copyright terms: Public domain W3C validator