MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgt0d Structured version   Visualization version   GIF version

Theorem mulgt0d 10394
Description: The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
mulgt0d.3 (𝜑 → 0 < 𝐴)
mulgt0d.4 (𝜑 → 0 < 𝐵)
Assertion
Ref Expression
mulgt0d (𝜑 → 0 < (𝐴 · 𝐵))

Proof of Theorem mulgt0d
StepHypRef Expression
1 ltd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 mulgt0d.3 . 2 (𝜑 → 0 < 𝐴)
3 ltd.2 . 2 (𝜑𝐵 ∈ ℝ)
4 mulgt0d.4 . 2 (𝜑 → 0 < 𝐵)
5 mulgt0 10317 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
61, 2, 3, 4, 5syl22anc 1477 1 (𝜑 → 0 < (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2145   class class class wbr 4786  (class class class)co 6793  cr 10137  0cc0 10138   · cmul 10143   < clt 10276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-i2m1 10206  ax-1ne0 10207  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-ltxr 10281
This theorem is referenced by:  recgt0  11069  prodgt0  11070  prodge0OLD  11072  ltmul1a  11074  prodge0rd  12140  expmulnbnd  13203  itg2monolem3  23739  tangtx  24478  tanregt0  24506  asinsinlem  24839  asinsin  24840  ostth2lem3  25545  xrge0iifhom  30323  unbdqndv2lem2  32838  knoppndvlem14  32853  knoppndvlem18  32857  knoppndvlem19  32858  knoppndvlem21  32860  itg2gt0cn  33797  pell14qrmulcl  37953  rmxypos  38040  jm2.27a  38098  stoweidlem1  40735  stoweidlem26  40760  stoweidlem44  40778  stoweidlem49  40783  wallispilem4  40802  stirlinglem6  40813
  Copyright terms: Public domain W3C validator