![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgsubdir | Structured version Visualization version GIF version |
Description: Subtraction of a group element from itself. (Contributed by Mario Carneiro, 13-Dec-2014.) |
Ref | Expression |
---|---|
mulgsubdir.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgsubdir.t | ⊢ · = (.g‘𝐺) |
mulgsubdir.d | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
mulgsubdir | ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 − 𝑁) · 𝑋) = ((𝑀 · 𝑋) − (𝑁 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znegcl 11613 | . . 3 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | |
2 | mulgsubdir.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | mulgsubdir.t | . . . 4 ⊢ · = (.g‘𝐺) | |
4 | eqid 2770 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
5 | 2, 3, 4 | mulgdir 17780 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + -𝑁) · 𝑋) = ((𝑀 · 𝑋)(+g‘𝐺)(-𝑁 · 𝑋))) |
6 | 1, 5 | syl3anr2 1525 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + -𝑁) · 𝑋) = ((𝑀 · 𝑋)(+g‘𝐺)(-𝑁 · 𝑋))) |
7 | simpr1 1232 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈ ℤ) | |
8 | 7 | zcnd 11684 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈ ℂ) |
9 | simpr2 1234 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → 𝑁 ∈ ℤ) | |
10 | 9 | zcnd 11684 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → 𝑁 ∈ ℂ) |
11 | 8, 10 | negsubd 10599 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → (𝑀 + -𝑁) = (𝑀 − 𝑁)) |
12 | 11 | oveq1d 6807 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + -𝑁) · 𝑋) = ((𝑀 − 𝑁) · 𝑋)) |
13 | eqid 2770 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
14 | 2, 3, 13 | mulgneg 17767 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = ((invg‘𝐺)‘(𝑁 · 𝑋))) |
15 | 14 | 3adant3r1 1196 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → (-𝑁 · 𝑋) = ((invg‘𝐺)‘(𝑁 · 𝑋))) |
16 | 15 | oveq2d 6808 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑋)(+g‘𝐺)(-𝑁 · 𝑋)) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑁 · 𝑋)))) |
17 | 2, 3 | mulgcl 17766 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑀 · 𝑋) ∈ 𝐵) |
18 | 17 | 3adant3r2 1197 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → (𝑀 · 𝑋) ∈ 𝐵) |
19 | 2, 3 | mulgcl 17766 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
20 | 19 | 3adant3r1 1196 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → (𝑁 · 𝑋) ∈ 𝐵) |
21 | mulgsubdir.d | . . . . 5 ⊢ − = (-g‘𝐺) | |
22 | 2, 4, 13, 21 | grpsubval 17672 | . . . 4 ⊢ (((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) − (𝑁 · 𝑋)) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑁 · 𝑋)))) |
23 | 18, 20, 22 | syl2anc 565 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑋) − (𝑁 · 𝑋)) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑁 · 𝑋)))) |
24 | 16, 23 | eqtr4d 2807 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑋)(+g‘𝐺)(-𝑁 · 𝑋)) = ((𝑀 · 𝑋) − (𝑁 · 𝑋))) |
25 | 6, 12, 24 | 3eqtr3d 2812 | 1 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 − 𝑁) · 𝑋) = ((𝑀 · 𝑋) − (𝑁 · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ‘cfv 6031 (class class class)co 6792 + caddc 10140 − cmin 10467 -cneg 10468 ℤcz 11578 Basecbs 16063 +gcplusg 16148 Grpcgrp 17629 invgcminusg 17630 -gcsg 17631 .gcmg 17747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-n0 11494 df-z 11579 df-uz 11888 df-fz 12533 df-seq 13008 df-0g 16309 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-grp 17632 df-minusg 17633 df-sbg 17634 df-mulg 17748 |
This theorem is referenced by: odmod 18171 odcong 18174 gexdvds 18205 archiabllem1a 30079 |
Copyright terms: Public domain | W3C validator |