MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgsubcl Structured version   Visualization version   GIF version

Theorem mulgsubcl 17602
Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b 𝐵 = (Base‘𝐺)
mulgnnsubcl.t · = (.g𝐺)
mulgnnsubcl.p + = (+g𝐺)
mulgnnsubcl.g (𝜑𝐺𝑉)
mulgnnsubcl.s (𝜑𝑆𝐵)
mulgnnsubcl.c ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
mulgnn0subcl.z 0 = (0g𝐺)
mulgnn0subcl.c (𝜑0𝑆)
mulgsubcl.i 𝐼 = (invg𝐺)
mulgsubcl.c ((𝜑𝑥𝑆) → (𝐼𝑥) ∈ 𝑆)
Assertion
Ref Expression
mulgsubcl ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝐼   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦   𝑥, ·   𝑥,𝑋,𝑦
Allowed substitution hints:   · (𝑦)   𝐼(𝑦)   𝑉(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem mulgsubcl
StepHypRef Expression
1 mulgnnsubcl.b . . . . . 6 𝐵 = (Base‘𝐺)
2 mulgnnsubcl.t . . . . . 6 · = (.g𝐺)
3 mulgnnsubcl.p . . . . . 6 + = (+g𝐺)
4 mulgnnsubcl.g . . . . . 6 (𝜑𝐺𝑉)
5 mulgnnsubcl.s . . . . . 6 (𝜑𝑆𝐵)
6 mulgnnsubcl.c . . . . . 6 ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
7 mulgnn0subcl.z . . . . . 6 0 = (0g𝐺)
8 mulgnn0subcl.c . . . . . 6 (𝜑0𝑆)
91, 2, 3, 4, 5, 6, 7, 8mulgnn0subcl 17601 . . . . 5 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
1093expa 1284 . . . 4 (((𝜑𝑁 ∈ ℕ0) ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
1110an32s 863 . . 3 (((𝜑𝑋𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝑆)
12113adantl2 1238 . 2 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝑆)
13 simp2 1082 . . . . . . . . 9 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑁 ∈ ℤ)
1413adantr 480 . . . . . . . 8 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
1514zcnd 11521 . . . . . . 7 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
1615negnegd 10421 . . . . . 6 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → --𝑁 = 𝑁)
1716oveq1d 6705 . . . . 5 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (--𝑁 · 𝑋) = (𝑁 · 𝑋))
18 id 22 . . . . . 6 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ)
1953ad2ant1 1102 . . . . . . 7 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑆𝐵)
20 simp3 1083 . . . . . . 7 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋𝑆)
2119, 20sseldd 3637 . . . . . 6 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋𝐵)
22 mulgsubcl.i . . . . . . 7 𝐼 = (invg𝐺)
231, 2, 22mulgnegnn 17598 . . . . . 6 ((-𝑁 ∈ ℕ ∧ 𝑋𝐵) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
2418, 21, 23syl2anr 494 . . . . 5 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
2517, 24eqtr3d 2687 . . . 4 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
261, 2, 3, 4, 5, 6mulgnnsubcl 17600 . . . . . . . 8 ((𝜑 ∧ -𝑁 ∈ ℕ ∧ 𝑋𝑆) → (-𝑁 · 𝑋) ∈ 𝑆)
27263expa 1284 . . . . . . 7 (((𝜑 ∧ -𝑁 ∈ ℕ) ∧ 𝑋𝑆) → (-𝑁 · 𝑋) ∈ 𝑆)
2827an32s 863 . . . . . 6 (((𝜑𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (-𝑁 · 𝑋) ∈ 𝑆)
29283adantl2 1238 . . . . 5 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (-𝑁 · 𝑋) ∈ 𝑆)
30 mulgsubcl.c . . . . . . . 8 ((𝜑𝑥𝑆) → (𝐼𝑥) ∈ 𝑆)
3130ralrimiva 2995 . . . . . . 7 (𝜑 → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
32313ad2ant1 1102 . . . . . 6 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
3332adantr 480 . . . . 5 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
34 fveq2 6229 . . . . . . 7 (𝑥 = (-𝑁 · 𝑋) → (𝐼𝑥) = (𝐼‘(-𝑁 · 𝑋)))
3534eleq1d 2715 . . . . . 6 (𝑥 = (-𝑁 · 𝑋) → ((𝐼𝑥) ∈ 𝑆 ↔ (𝐼‘(-𝑁 · 𝑋)) ∈ 𝑆))
3635rspcv 3336 . . . . 5 ((-𝑁 · 𝑋) ∈ 𝑆 → (∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆 → (𝐼‘(-𝑁 · 𝑋)) ∈ 𝑆))
3729, 33, 36sylc 65 . . . 4 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (𝐼‘(-𝑁 · 𝑋)) ∈ 𝑆)
3825, 37eqeltrd 2730 . . 3 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (𝑁 · 𝑋) ∈ 𝑆)
3938adantrl 752 . 2 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑁 · 𝑋) ∈ 𝑆)
40 elznn0nn 11429 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
4113, 40sylib 208 . 2 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
4212, 39, 41mpjaodan 844 1 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wss 3607  cfv 5926  (class class class)co 6690  cr 9973  -cneg 10305  cn 11058  0cn0 11330  cz 11415  Basecbs 15904  +gcplusg 15988  0gc0g 16147  invgcminusg 17470  .gcmg 17587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-seq 12842  df-mulg 17588
This theorem is referenced by:  mulgcl  17606  subgmulgcl  17654
  Copyright terms: Public domain W3C validator