MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgrhm Structured version   Visualization version   GIF version

Theorem mulgrhm 20068
Description: The powers of the element 1 give a ring homomorphism from to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m · = (.g𝑅)
mulgghm2.f 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
mulgrhm.1 1 = (1r𝑅)
Assertion
Ref Expression
mulgrhm (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
Distinct variable groups:   𝑅,𝑛   · ,𝑛   1 ,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem mulgrhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 20046 . 2 ℤ = (Base‘ℤring)
2 zring1 20051 . 2 1 = (1r‘ℤring)
3 mulgrhm.1 . 2 1 = (1r𝑅)
4 zringmulr 20049 . 2 · = (.r‘ℤring)
5 eqid 2760 . 2 (.r𝑅) = (.r𝑅)
6 zringring 20043 . . 3 ring ∈ Ring
76a1i 11 . 2 (𝑅 ∈ Ring → ℤring ∈ Ring)
8 id 22 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
9 1z 11619 . . . 4 1 ∈ ℤ
10 oveq1 6821 . . . . 5 (𝑛 = 1 → (𝑛 · 1 ) = (1 · 1 ))
11 mulgghm2.f . . . . 5 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))
12 ovex 6842 . . . . 5 (1 · 1 ) ∈ V
1310, 11, 12fvmpt 6445 . . . 4 (1 ∈ ℤ → (𝐹‘1) = (1 · 1 ))
149, 13ax-mp 5 . . 3 (𝐹‘1) = (1 · 1 )
15 eqid 2760 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
1615, 3ringidcl 18788 . . . 4 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
17 mulgghm2.m . . . . 5 · = (.g𝑅)
1815, 17mulg1 17769 . . . 4 ( 1 ∈ (Base‘𝑅) → (1 · 1 ) = 1 )
1916, 18syl 17 . . 3 (𝑅 ∈ Ring → (1 · 1 ) = 1 )
2014, 19syl5eq 2806 . 2 (𝑅 ∈ Ring → (𝐹‘1) = 1 )
21 ringgrp 18772 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2221adantr 472 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Grp)
23 simprr 813 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
2416adantr 472 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1 ∈ (Base‘𝑅))
2515, 17mulgcl 17780 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 1 ∈ (Base‘𝑅)) → (𝑦 · 1 ) ∈ (Base‘𝑅))
2622, 23, 24, 25syl3anc 1477 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑦 · 1 ) ∈ (Base‘𝑅))
2715, 5, 3ringlidm 18791 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑦 · 1 ) ∈ (Base‘𝑅)) → ( 1 (.r𝑅)(𝑦 · 1 )) = (𝑦 · 1 ))
2826, 27syldan 488 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ( 1 (.r𝑅)(𝑦 · 1 )) = (𝑦 · 1 ))
2928oveq2d 6830 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · ( 1 (.r𝑅)(𝑦 · 1 ))) = (𝑥 · (𝑦 · 1 )))
30 simpl 474 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Ring)
31 simprl 811 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
3215, 17, 5mulgass2 18821 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 1 ∈ (Base‘𝑅) ∧ (𝑦 · 1 ) ∈ (Base‘𝑅))) → ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )) = (𝑥 · ( 1 (.r𝑅)(𝑦 · 1 ))))
3330, 31, 24, 26, 32syl13anc 1479 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )) = (𝑥 · ( 1 (.r𝑅)(𝑦 · 1 ))))
3415, 17mulgass 17800 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ∈ (Base‘𝑅))) → ((𝑥 · 𝑦) · 1 ) = (𝑥 · (𝑦 · 1 )))
3522, 31, 23, 24, 34syl13anc 1479 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) = (𝑥 · (𝑦 · 1 )))
3629, 33, 353eqtr4rd 2805 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 1 ) = ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )))
37 zmulcl 11638 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
3837adantl 473 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
39 oveq1 6821 . . . . 5 (𝑛 = (𝑥 · 𝑦) → (𝑛 · 1 ) = ((𝑥 · 𝑦) · 1 ))
40 ovex 6842 . . . . 5 ((𝑥 · 𝑦) · 1 ) ∈ V
4139, 11, 40fvmpt 6445 . . . 4 ((𝑥 · 𝑦) ∈ ℤ → (𝐹‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦) · 1 ))
4238, 41syl 17 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 · 𝑦)) = ((𝑥 · 𝑦) · 1 ))
43 oveq1 6821 . . . . . 6 (𝑛 = 𝑥 → (𝑛 · 1 ) = (𝑥 · 1 ))
44 ovex 6842 . . . . . 6 (𝑥 · 1 ) ∈ V
4543, 11, 44fvmpt 6445 . . . . 5 (𝑥 ∈ ℤ → (𝐹𝑥) = (𝑥 · 1 ))
46 oveq1 6821 . . . . . 6 (𝑛 = 𝑦 → (𝑛 · 1 ) = (𝑦 · 1 ))
47 ovex 6842 . . . . . 6 (𝑦 · 1 ) ∈ V
4846, 11, 47fvmpt 6445 . . . . 5 (𝑦 ∈ ℤ → (𝐹𝑦) = (𝑦 · 1 ))
4945, 48oveqan12d 6833 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝐹𝑥)(.r𝑅)(𝐹𝑦)) = ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )))
5049adantl 473 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝐹𝑥)(.r𝑅)(𝐹𝑦)) = ((𝑥 · 1 )(.r𝑅)(𝑦 · 1 )))
5136, 42, 503eqtr4d 2804 . 2 ((𝑅 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥)(.r𝑅)(𝐹𝑦)))
5217, 11, 15mulgghm2 20067 . . 3 ((𝑅 ∈ Grp ∧ 1 ∈ (Base‘𝑅)) → 𝐹 ∈ (ℤring GrpHom 𝑅))
5321, 16, 52syl2anc 696 . 2 (𝑅 ∈ Ring → 𝐹 ∈ (ℤring GrpHom 𝑅))
541, 2, 3, 4, 5, 7, 8, 20, 51, 53isrhm2d 18950 1 (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  cmpt 4881  cfv 6049  (class class class)co 6814  1c1 10149   · cmul 10153  cz 11589  Basecbs 16079  .rcmulr 16164  Grpcgrp 17643  .gcmg 17761   GrpHom cghm 17878  1rcur 18721  Ringcrg 18767   RingHom crh 18934  ringzring 20040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-fz 12540  df-seq 13016  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-grp 17646  df-minusg 17647  df-mulg 17762  df-subg 17812  df-ghm 17879  df-cmn 18415  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-rnghom 18937  df-subrg 19000  df-cnfld 19969  df-zring 20041
This theorem is referenced by:  mulgrhm2  20069
  Copyright terms: Public domain W3C validator