Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnnp1 Structured version   Visualization version   GIF version

Theorem mulgnnp1 17770
 Description: Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg1.b 𝐵 = (Base‘𝐺)
mulg1.m · = (.g𝐺)
mulgnnp1.p + = (+g𝐺)
Assertion
Ref Expression
mulgnnp1 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))

Proof of Theorem mulgnnp1
StepHypRef Expression
1 simpl 474 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑁 ∈ ℕ)
2 nnuz 11936 . . . . 5 ℕ = (ℤ‘1)
31, 2syl6eleq 2849 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑁 ∈ (ℤ‘1))
4 seqp1 13030 . . . 4 (𝑁 ∈ (ℤ‘1) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1))))
53, 4syl 17 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1))))
6 id 22 . . . . 5 (𝑋𝐵𝑋𝐵)
7 peano2nn 11244 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
8 fvconst2g 6632 . . . . 5 ((𝑋𝐵 ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {𝑋})‘(𝑁 + 1)) = 𝑋)
96, 7, 8syl2anr 496 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((ℕ × {𝑋})‘(𝑁 + 1)) = 𝑋)
109oveq2d 6830 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1))) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋))
115, 10eqtrd 2794 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋))
12 mulg1.b . . . 4 𝐵 = (Base‘𝐺)
13 mulgnnp1.p . . . 4 + = (+g𝐺)
14 mulg1.m . . . 4 · = (.g𝐺)
15 eqid 2760 . . . 4 seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋}))
1612, 13, 14, 15mulgnn 17768 . . 3 (((𝑁 + 1) ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)))
177, 16sylan 489 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)))
1812, 13, 14, 15mulgnn 17768 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁))
1918oveq1d 6829 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 · 𝑋) + 𝑋) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋))
2011, 17, 193eqtr4d 2804 1 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  {csn 4321   × cxp 5264  ‘cfv 6049  (class class class)co 6814  1c1 10149   + caddc 10151  ℕcn 11232  ℤ≥cuz 11899  seqcseq 13015  Basecbs 16079  +gcplusg 16163  .gcmg 17761 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-seq 13016  df-mulg 17762 This theorem is referenced by:  mulg2  17771  mulgnn0p1  17773  mulgnnass  17797  mulgnnassOLD  17798  chfacfpmmulgsum2  20892  xrsmulgzz  30008  ofldchr  30144
 Copyright terms: Public domain W3C validator