MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnndirOLD Structured version   Visualization version   GIF version

Theorem mulgnndirOLD 17791
Description: Obsolete proof of mulgnndir 17790 as of 29-Aug-2021. Sum of group multiples, for positive multiples. TODO: This can be generalized to a semigroup if/when we introduce them. (Contributed by Mario Carneiro, 11-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
mulgnndir.b 𝐵 = (Base‘𝐺)
mulgnndir.t · = (.g𝐺)
mulgnndir.p + = (+g𝐺)
Assertion
Ref Expression
mulgnndirOLD ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))

Proof of Theorem mulgnndirOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgnndir.b . . . . . 6 𝐵 = (Base‘𝐺)
2 mulgnndir.p . . . . . 6 + = (+g𝐺)
31, 2mndcl 17522 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
433expb 1114 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
54adantlr 753 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
61, 2mndass 17523 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
76adantlr 753 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
8 simpr2 1236 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑁 ∈ ℕ)
9 nnuz 11936 . . . . . 6 ℕ = (ℤ‘1)
108, 9syl6eleq 2849 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑁 ∈ (ℤ‘1))
11 simpr1 1234 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑀 ∈ ℕ)
1211nnzd 11693 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑀 ∈ ℤ)
13 eluzadd 11928 . . . . 5 ((𝑁 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈ (ℤ‘(1 + 𝑀)))
1410, 12, 13syl2anc 696 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑁 + 𝑀) ∈ (ℤ‘(1 + 𝑀)))
1511nncnd 11248 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑀 ∈ ℂ)
168nncnd 11248 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑁 ∈ ℂ)
1715, 16addcomd 10450 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑀 + 𝑁) = (𝑁 + 𝑀))
18 ax-1cn 10206 . . . . . 6 1 ∈ ℂ
19 addcom 10434 . . . . . 6 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 + 1) = (1 + 𝑀))
2015, 18, 19sylancl 697 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑀 + 1) = (1 + 𝑀))
2120fveq2d 6357 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (ℤ‘(𝑀 + 1)) = (ℤ‘(1 + 𝑀)))
2214, 17, 213eltr4d 2854 . . 3 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑀 + 𝑁) ∈ (ℤ‘(𝑀 + 1)))
2311, 9syl6eleq 2849 . . 3 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑀 ∈ (ℤ‘1))
24 simpr3 1238 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑋𝐵)
25 elfznn 12583 . . . . 5 (𝑥 ∈ (1...(𝑀 + 𝑁)) → 𝑥 ∈ ℕ)
26 fvconst2g 6632 . . . . 5 ((𝑋𝐵𝑥 ∈ ℕ) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
2724, 25, 26syl2an 495 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...(𝑀 + 𝑁))) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
2824adantr 472 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...(𝑀 + 𝑁))) → 𝑋𝐵)
2927, 28eqeltrd 2839 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...(𝑀 + 𝑁))) → ((ℕ × {𝑋})‘𝑥) ∈ 𝐵)
305, 7, 22, 23, 29seqsplit 13048 . 2 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁))))
31 nnaddcl 11254 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
3211, 8, 31syl2anc 696 . . 3 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑀 + 𝑁) ∈ ℕ)
33 mulgnndir.t . . . 4 · = (.g𝐺)
34 eqid 2760 . . . 4 seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋}))
351, 2, 33, 34mulgnn 17768 . . 3 (((𝑀 + 𝑁) ∈ ℕ ∧ 𝑋𝐵) → ((𝑀 + 𝑁) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)))
3632, 24, 35syl2anc 696 . 2 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)))
371, 2, 33, 34mulgnn 17768 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑋𝐵) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀))
3811, 24, 37syl2anc 696 . . 3 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀))
39 elfznn 12583 . . . . . . 7 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
4024, 39, 26syl2an 495 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
4124adantr 472 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → 𝑋𝐵)
42 nnaddcl 11254 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑥 + 𝑀) ∈ ℕ)
4339, 11, 42syl2anr 496 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 + 𝑀) ∈ ℕ)
44 fvconst2g 6632 . . . . . . 7 ((𝑋𝐵 ∧ (𝑥 + 𝑀) ∈ ℕ) → ((ℕ × {𝑋})‘(𝑥 + 𝑀)) = 𝑋)
4541, 43, 44syl2anc 696 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘(𝑥 + 𝑀)) = 𝑋)
4640, 45eqtr4d 2797 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = ((ℕ × {𝑋})‘(𝑥 + 𝑀)))
4710, 12, 46seqshft2 13041 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (seq1( + , (ℕ × {𝑋}))‘𝑁) = (seq(1 + 𝑀)( + , (ℕ × {𝑋}))‘(𝑁 + 𝑀)))
481, 2, 33, 34mulgnn 17768 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁))
498, 24, 48syl2anc 696 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁))
5020seqeq1d 13021 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → seq(𝑀 + 1)( + , (ℕ × {𝑋})) = seq(1 + 𝑀)( + , (ℕ × {𝑋})))
5150, 17fveq12d 6359 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)) = (seq(1 + 𝑀)( + , (ℕ × {𝑋}))‘(𝑁 + 𝑀)))
5247, 49, 513eqtr4d 2804 . . 3 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑁 · 𝑋) = (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)))
5338, 52oveq12d 6832 . 2 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁))))
5430, 36, 533eqtr4d 2804 1 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  {csn 4321   × cxp 5264  cfv 6049  (class class class)co 6814  cc 10146  1c1 10149   + caddc 10151  cn 11232  cz 11589  cuz 11899  ...cfz 12539  seqcseq 13015  Basecbs 16079  +gcplusg 16163  Mndcmnd 17515  .gcmg 17761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-seq 13016  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mulg 17762
This theorem is referenced by:  mulgnnassOLD  17798
  Copyright terms: Public domain W3C validator