Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgfn Structured version   Visualization version   GIF version

Theorem mulgfn 17751
 Description: Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mulgfn.b 𝐵 = (Base‘𝐺)
mulgfn.t · = (.g𝐺)
Assertion
Ref Expression
mulgfn · Fn (ℤ × 𝐵)

Proof of Theorem mulgfn
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgfn.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2770 . . 3 (+g𝐺) = (+g𝐺)
3 eqid 2770 . . 3 (0g𝐺) = (0g𝐺)
4 eqid 2770 . . 3 (invg𝐺) = (invg𝐺)
5 mulgfn.t . . 3 · = (.g𝐺)
61, 2, 3, 4, 5mulgfval 17749 . 2 · = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)))))
7 fvex 6342 . . 3 (0g𝐺) ∈ V
8 fvex 6342 . . . 4 (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛) ∈ V
9 fvex 6342 . . . 4 ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)) ∈ V
108, 9ifex 4293 . . 3 if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))) ∈ V
117, 10ifex 4293 . 2 if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)))) ∈ V
126, 11fnmpt2i 7388 1 · Fn (ℤ × 𝐵)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1630  ifcif 4223  {csn 4314   class class class wbr 4784   × cxp 5247   Fn wfn 6026  ‘cfv 6031  0cc0 10137  1c1 10138   < clt 10275  -cneg 10468  ℕcn 11221  ℤcz 11578  seqcseq 13007  Basecbs 16063  +gcplusg 16148  0gc0g 16307  invgcminusg 17630  .gcmg 17747 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-neg 10470  df-z 11579  df-seq 13008  df-mulg 17748 This theorem is referenced by:  mulgfvi  17752  tgpmulg2  22117
 Copyright terms: Public domain W3C validator