MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgass2 Structured version   Visualization version   GIF version

Theorem mulgass2 18821
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mulgass2.b 𝐵 = (Base‘𝑅)
mulgass2.m · = (.g𝑅)
mulgass2.t × = (.r𝑅)
Assertion
Ref Expression
mulgass2 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))

Proof of Theorem mulgass2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6821 . . . . . . 7 (𝑥 = 0 → (𝑥 · 𝑋) = (0 · 𝑋))
21oveq1d 6829 . . . . . 6 (𝑥 = 0 → ((𝑥 · 𝑋) × 𝑌) = ((0 · 𝑋) × 𝑌))
3 oveq1 6821 . . . . . 6 (𝑥 = 0 → (𝑥 · (𝑋 × 𝑌)) = (0 · (𝑋 × 𝑌)))
42, 3eqeq12d 2775 . . . . 5 (𝑥 = 0 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((0 · 𝑋) × 𝑌) = (0 · (𝑋 × 𝑌))))
5 oveq1 6821 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋))
65oveq1d 6829 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 · 𝑋) × 𝑌) = ((𝑦 · 𝑋) × 𝑌))
7 oveq1 6821 . . . . . 6 (𝑥 = 𝑦 → (𝑥 · (𝑋 × 𝑌)) = (𝑦 · (𝑋 × 𝑌)))
86, 7eqeq12d 2775 . . . . 5 (𝑥 = 𝑦 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌))))
9 oveq1 6821 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥 · 𝑋) = ((𝑦 + 1) · 𝑋))
109oveq1d 6829 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥 · 𝑋) × 𝑌) = (((𝑦 + 1) · 𝑋) × 𝑌))
11 oveq1 6821 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑥 · (𝑋 × 𝑌)) = ((𝑦 + 1) · (𝑋 × 𝑌)))
1210, 11eqeq12d 2775 . . . . 5 (𝑥 = (𝑦 + 1) → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌))))
13 oveq1 6821 . . . . . . 7 (𝑥 = -𝑦 → (𝑥 · 𝑋) = (-𝑦 · 𝑋))
1413oveq1d 6829 . . . . . 6 (𝑥 = -𝑦 → ((𝑥 · 𝑋) × 𝑌) = ((-𝑦 · 𝑋) × 𝑌))
15 oveq1 6821 . . . . . 6 (𝑥 = -𝑦 → (𝑥 · (𝑋 × 𝑌)) = (-𝑦 · (𝑋 × 𝑌)))
1614, 15eqeq12d 2775 . . . . 5 (𝑥 = -𝑦 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((-𝑦 · 𝑋) × 𝑌) = (-𝑦 · (𝑋 × 𝑌))))
17 oveq1 6821 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 · 𝑋) = (𝑁 · 𝑋))
1817oveq1d 6829 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 · 𝑋) × 𝑌) = ((𝑁 · 𝑋) × 𝑌))
19 oveq1 6821 . . . . . 6 (𝑥 = 𝑁 → (𝑥 · (𝑋 × 𝑌)) = (𝑁 · (𝑋 × 𝑌)))
2018, 19eqeq12d 2775 . . . . 5 (𝑥 = 𝑁 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))
21 mulgass2.b . . . . . . . 8 𝐵 = (Base‘𝑅)
22 mulgass2.t . . . . . . . 8 × = (.r𝑅)
23 eqid 2760 . . . . . . . 8 (0g𝑅) = (0g𝑅)
2421, 22, 23ringlz 18807 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ((0g𝑅) × 𝑌) = (0g𝑅))
25243adant3 1127 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → ((0g𝑅) × 𝑌) = (0g𝑅))
26 simp3 1133 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → 𝑋𝐵)
27 mulgass2.m . . . . . . . . 9 · = (.g𝑅)
2821, 23, 27mulg0 17767 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝑅))
2926, 28syl 17 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (0 · 𝑋) = (0g𝑅))
3029oveq1d 6829 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → ((0 · 𝑋) × 𝑌) = ((0g𝑅) × 𝑌))
3121, 22ringcl 18781 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 × 𝑌) ∈ 𝐵)
32313com23 1121 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑋 × 𝑌) ∈ 𝐵)
3321, 23, 27mulg0 17767 . . . . . . 7 ((𝑋 × 𝑌) ∈ 𝐵 → (0 · (𝑋 × 𝑌)) = (0g𝑅))
3432, 33syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (0 · (𝑋 × 𝑌)) = (0g𝑅))
3525, 30, 343eqtr4d 2804 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → ((0 · 𝑋) × 𝑌) = (0 · (𝑋 × 𝑌)))
36 oveq1 6821 . . . . . . 7 (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌)))
37 simpl1 1228 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑅 ∈ Ring)
38 ringgrp 18772 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
3937, 38syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑅 ∈ Grp)
40 nn0z 11612 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
4140adantl 473 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℤ)
4226adantr 472 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑋𝐵)
43 eqid 2760 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
4421, 27, 43mulgp1 17795 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)𝑋))
4539, 41, 42, 44syl3anc 1477 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)𝑋))
4645oveq1d 6829 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1) · 𝑋) × 𝑌) = (((𝑦 · 𝑋)(+g𝑅)𝑋) × 𝑌))
47383ad2ant1 1128 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → 𝑅 ∈ Grp)
4847adantr 472 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑅 ∈ Grp)
4921, 27mulgcl 17780 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
5048, 41, 42, 49syl3anc 1477 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (𝑦 · 𝑋) ∈ 𝐵)
51 simpl2 1230 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑌𝐵)
5221, 43, 22ringdir 18787 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑦 · 𝑋) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑦 · 𝑋)(+g𝑅)𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)))
5337, 50, 42, 51, 52syl13anc 1479 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (((𝑦 · 𝑋)(+g𝑅)𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)))
5446, 53eqtrd 2794 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1) · 𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)))
5532adantr 472 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (𝑋 × 𝑌) ∈ 𝐵)
5621, 27, 43mulgp1 17795 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝑋 × 𝑌) ∈ 𝐵) → ((𝑦 + 1) · (𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌)))
5739, 41, 55, 56syl3anc 1477 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · (𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌)))
5854, 57eqeq12d 2775 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → ((((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌)) ↔ (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌))))
5936, 58syl5ibr 236 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌))))
6059ex 449 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑦 ∈ ℕ0 → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌)))))
61 fveq2 6353 . . . . . . 7 (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → ((invg𝑅)‘((𝑦 · 𝑋) × 𝑌)) = ((invg𝑅)‘(𝑦 · (𝑋 × 𝑌))))
6247adantr 472 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑅 ∈ Grp)
63 nnz 11611 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
6463adantl 473 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℤ)
6526adantr 472 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑋𝐵)
66 eqid 2760 . . . . . . . . . . . 12 (invg𝑅) = (invg𝑅)
6721, 27, 66mulgneg 17781 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) = ((invg𝑅)‘(𝑦 · 𝑋)))
6862, 64, 65, 67syl3anc 1477 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (-𝑦 · 𝑋) = ((invg𝑅)‘(𝑦 · 𝑋)))
6968oveq1d 6829 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → ((-𝑦 · 𝑋) × 𝑌) = (((invg𝑅)‘(𝑦 · 𝑋)) × 𝑌))
70 simpl1 1228 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑅 ∈ Ring)
7162, 64, 65, 49syl3anc 1477 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (𝑦 · 𝑋) ∈ 𝐵)
72 simpl2 1230 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑌𝐵)
7321, 22, 66, 70, 71, 72ringmneg1 18816 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (((invg𝑅)‘(𝑦 · 𝑋)) × 𝑌) = ((invg𝑅)‘((𝑦 · 𝑋) × 𝑌)))
7469, 73eqtrd 2794 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → ((-𝑦 · 𝑋) × 𝑌) = ((invg𝑅)‘((𝑦 · 𝑋) × 𝑌)))
7532adantr 472 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (𝑋 × 𝑌) ∈ 𝐵)
7621, 27, 66mulgneg 17781 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝑋 × 𝑌) ∈ 𝐵) → (-𝑦 · (𝑋 × 𝑌)) = ((invg𝑅)‘(𝑦 · (𝑋 × 𝑌))))
7762, 64, 75, 76syl3anc 1477 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (-𝑦 · (𝑋 × 𝑌)) = ((invg𝑅)‘(𝑦 · (𝑋 × 𝑌))))
7874, 77eqeq12d 2775 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (((-𝑦 · 𝑋) × 𝑌) = (-𝑦 · (𝑋 × 𝑌)) ↔ ((invg𝑅)‘((𝑦 · 𝑋) × 𝑌)) = ((invg𝑅)‘(𝑦 · (𝑋 × 𝑌)))))
7961, 78syl5ibr 236 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → ((-𝑦 · 𝑋) × 𝑌) = (-𝑦 · (𝑋 × 𝑌))))
8079ex 449 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑦 ∈ ℕ → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → ((-𝑦 · 𝑋) × 𝑌) = (-𝑦 · (𝑋 × 𝑌)))))
814, 8, 12, 16, 20, 35, 60, 80zindd 11690 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑁 ∈ ℤ → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))
82813exp 1113 . . 3 (𝑅 ∈ Ring → (𝑌𝐵 → (𝑋𝐵 → (𝑁 ∈ ℤ → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))))
8382com24 95 . 2 (𝑅 ∈ Ring → (𝑁 ∈ ℤ → (𝑋𝐵 → (𝑌𝐵 → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))))
84833imp2 1443 1 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  cfv 6049  (class class class)co 6814  0cc0 10148  1c1 10149   + caddc 10151  -cneg 10479  cn 11232  0cn0 11504  cz 11589  Basecbs 16079  +gcplusg 16163  .rcmulr 16164  0gc0g 16322  Grpcgrp 17643  invgcminusg 17644  .gcmg 17761  Ringcrg 18767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-seq 13016  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-plusg 16176  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-mulg 17762  df-mgp 18710  df-ur 18722  df-ring 18769
This theorem is referenced by:  mulgass3  18857  mulgrhm  20068  zlmassa  20094  isarchiofld  30147
  Copyright terms: Public domain W3C validator