MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgaddcom Structured version   Visualization version   GIF version

Theorem mulgaddcom 17772
Description: The group multiple operator commutes with the group operation. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulgaddcom.b 𝐵 = (Base‘𝐺)
mulgaddcom.t · = (.g𝐺)
mulgaddcom.p + = (+g𝐺)
Assertion
Ref Expression
mulgaddcom ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))

Proof of Theorem mulgaddcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6800 . . . . . . 7 (𝑥 = 0 → (𝑥 · 𝑋) = (0 · 𝑋))
21oveq1d 6808 . . . . . 6 (𝑥 = 0 → ((𝑥 · 𝑋) + 𝑋) = ((0 · 𝑋) + 𝑋))
31oveq2d 6809 . . . . . 6 (𝑥 = 0 → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + (0 · 𝑋)))
42, 3eqeq12d 2786 . . . . 5 (𝑥 = 0 → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ ((0 · 𝑋) + 𝑋) = (𝑋 + (0 · 𝑋))))
5 oveq1 6800 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋))
65oveq1d 6808 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 · 𝑋) + 𝑋) = ((𝑦 · 𝑋) + 𝑋))
75oveq2d 6809 . . . . . 6 (𝑥 = 𝑦 → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + (𝑦 · 𝑋)))
86, 7eqeq12d 2786 . . . . 5 (𝑥 = 𝑦 → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))))
9 oveq1 6800 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥 · 𝑋) = ((𝑦 + 1) · 𝑋))
109oveq1d 6808 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥 · 𝑋) + 𝑋) = (((𝑦 + 1) · 𝑋) + 𝑋))
119oveq2d 6809 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + ((𝑦 + 1) · 𝑋)))
1210, 11eqeq12d 2786 . . . . 5 (𝑥 = (𝑦 + 1) → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ (((𝑦 + 1) · 𝑋) + 𝑋) = (𝑋 + ((𝑦 + 1) · 𝑋))))
13 oveq1 6800 . . . . . . 7 (𝑥 = -𝑦 → (𝑥 · 𝑋) = (-𝑦 · 𝑋))
1413oveq1d 6808 . . . . . 6 (𝑥 = -𝑦 → ((𝑥 · 𝑋) + 𝑋) = ((-𝑦 · 𝑋) + 𝑋))
1513oveq2d 6809 . . . . . 6 (𝑥 = -𝑦 → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + (-𝑦 · 𝑋)))
1614, 15eqeq12d 2786 . . . . 5 (𝑥 = -𝑦 → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))))
17 oveq1 6800 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 · 𝑋) = (𝑁 · 𝑋))
1817oveq1d 6808 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 · 𝑋) + 𝑋) = ((𝑁 · 𝑋) + 𝑋))
1917oveq2d 6809 . . . . . 6 (𝑥 = 𝑁 → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + (𝑁 · 𝑋)))
2018, 19eqeq12d 2786 . . . . 5 (𝑥 = 𝑁 → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋))))
21 mulgaddcom.b . . . . . . 7 𝐵 = (Base‘𝐺)
22 mulgaddcom.p . . . . . . 7 + = (+g𝐺)
23 eqid 2771 . . . . . . 7 (0g𝐺) = (0g𝐺)
2421, 22, 23grplid 17660 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
25 mulgaddcom.t . . . . . . . . 9 · = (.g𝐺)
2621, 23, 25mulg0 17754 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
2726adantl 467 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
2827oveq1d 6808 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0 · 𝑋) + 𝑋) = ((0g𝐺) + 𝑋))
2927oveq2d 6809 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0 · 𝑋)) = (𝑋 + (0g𝐺)))
3021, 22, 23grprid 17661 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0g𝐺)) = 𝑋)
3129, 30eqtrd 2805 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0 · 𝑋)) = 𝑋)
3224, 28, 313eqtr4d 2815 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0 · 𝑋) + 𝑋) = (𝑋 + (0 · 𝑋)))
33 nn0z 11602 . . . . . . . . . 10 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
34 simp1 1130 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → 𝐺 ∈ Grp)
35 simp2 1131 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → 𝑋𝐵)
36 simp3 1132 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → 𝑦 ∈ ℤ)
3734, 36, 353jca 1122 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → (𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵))
3821, 25mulgcl 17767 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
3937, 38syl 17 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → (𝑦 · 𝑋) ∈ 𝐵)
4021, 22grpass 17639 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ (𝑦 · 𝑋) ∈ 𝐵𝑋𝐵)) → ((𝑋 + (𝑦 · 𝑋)) + 𝑋) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
4134, 35, 39, 35, 40syl13anc 1478 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → ((𝑋 + (𝑦 · 𝑋)) + 𝑋) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
4233, 41syl3an3 1169 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → ((𝑋 + (𝑦 · 𝑋)) + 𝑋) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
4342adantr 466 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑋 + (𝑦 · 𝑋)) + 𝑋) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
44 grpmnd 17637 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
45443ad2ant1 1127 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → 𝐺 ∈ Mnd)
46 simp3 1132 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
47 simp2 1131 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → 𝑋𝐵)
4845, 46, 473jca 1122 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → (𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝐵))
4921, 25, 22mulgnn0p1 17760 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋) + 𝑋))
5048, 49syl 17 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋) + 𝑋))
5150eqeq1d 2773 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → (((𝑦 + 1) · 𝑋) = (𝑋 + (𝑦 · 𝑋)) ↔ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))))
5251biimpar 463 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑦 + 1) · 𝑋) = (𝑋 + (𝑦 · 𝑋)))
5352oveq1d 6808 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑦 + 1) · 𝑋) + 𝑋) = ((𝑋 + (𝑦 · 𝑋)) + 𝑋))
5450oveq2d 6809 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → (𝑋 + ((𝑦 + 1) · 𝑋)) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
5554adantr 466 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + ((𝑦 + 1) · 𝑋)) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
5643, 53, 553eqtr4d 2815 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑦 + 1) · 𝑋) + 𝑋) = (𝑋 + ((𝑦 + 1) · 𝑋)))
5756ex 397 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → (((𝑦 + 1) · 𝑋) + 𝑋) = (𝑋 + ((𝑦 + 1) · 𝑋))))
58573expia 1114 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℕ0 → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → (((𝑦 + 1) · 𝑋) + 𝑋) = (𝑋 + ((𝑦 + 1) · 𝑋)))))
59 nnz 11601 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
6021, 25, 22mulgaddcomlem 17771 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
6160ex 397 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))))
62613exp 1112 . . . . . . . 8 (𝐺 ∈ Grp → (𝑦 ∈ ℤ → (𝑋𝐵 → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))))))
6362com23 86 . . . . . . 7 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑦 ∈ ℤ → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))))))
6463imp 393 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℤ → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))))
6559, 64syl5 34 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℕ → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))))
664, 8, 12, 16, 20, 32, 58, 65zindd 11680 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁 ∈ ℤ → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋))))
6766ex 397 . . 3 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑁 ∈ ℤ → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))))
6867com23 86 . 2 (𝐺 ∈ Grp → (𝑁 ∈ ℤ → (𝑋𝐵 → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))))
69683imp 1101 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  cfv 6031  (class class class)co 6793  0cc0 10138  1c1 10139   + caddc 10141  -cneg 10469  cn 11222  0cn0 11494  cz 11579  Basecbs 16064  +gcplusg 16149  0gc0g 16308  Mndcmnd 17502  Grpcgrp 17630  .gcmg 17748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-seq 13009  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-mulg 17749
This theorem is referenced by:  mulginvcom  17773
  Copyright terms: Public domain W3C validator