![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcompr | Structured version Visualization version GIF version |
Description: Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by NM, 19-Nov-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulcompr | ⊢ (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpv 10025 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 ·Q 𝑦)}) | |
2 | mpv 10025 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P) → (𝐵 ·P 𝐴) = {𝑥 ∣ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 ·Q 𝑧)}) | |
3 | mulcomnq 9967 | . . . . . . . . 9 ⊢ (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦) | |
4 | 3 | eqeq2i 2772 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 ·Q 𝑧) ↔ 𝑥 = (𝑧 ·Q 𝑦)) |
5 | 4 | 2rexbii 3180 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 ·Q 𝑧) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 ·Q 𝑦)) |
6 | rexcom 3237 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 ·Q 𝑦) ↔ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 ·Q 𝑦)) | |
7 | 5, 6 | bitri 264 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 ·Q 𝑧) ↔ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 ·Q 𝑦)) |
8 | 7 | abbii 2877 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑦 ·Q 𝑧)} = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 ·Q 𝑦)} |
9 | 2, 8 | syl6eq 2810 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P) → (𝐵 ·P 𝐴) = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 ·Q 𝑦)}) |
10 | 9 | ancoms 468 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐵 ·P 𝐴) = {𝑥 ∣ ∃𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = (𝑧 ·Q 𝑦)}) |
11 | 1, 10 | eqtr4d 2797 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴)) |
12 | dmmp 10027 | . . 3 ⊢ dom ·P = (P × P) | |
13 | 12 | ndmovcom 6986 | . 2 ⊢ (¬ (𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴)) |
14 | 11, 13 | pm2.61i 176 | 1 ⊢ (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1632 ∈ wcel 2139 {cab 2746 ∃wrex 3051 (class class class)co 6813 ·Q cmq 9870 Pcnp 9873 ·P cmp 9876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-omul 7734 df-er 7911 df-ni 9886 df-mi 9888 df-lti 9889 df-mpq 9923 df-enq 9925 df-nq 9926 df-erq 9927 df-mq 9929 df-1nq 9930 df-np 9995 df-mp 9998 |
This theorem is referenced by: mulcmpblnrlem 10083 mulcomsr 10102 mulasssr 10103 m1m1sr 10106 recexsrlem 10116 mulgt0sr 10118 |
Copyright terms: Public domain | W3C validator |