![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcompi | Structured version Visualization version GIF version |
Description: Multiplication of positive integers is commutative. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulcompi | ⊢ (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 9913 | . . . 4 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
2 | pinn 9913 | . . . 4 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
3 | nnmcom 7878 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 𝐵) = (𝐵 ·𝑜 𝐴)) | |
4 | 1, 2, 3 | syl2an 495 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·𝑜 𝐵) = (𝐵 ·𝑜 𝐴)) |
5 | mulpiord 9920 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·𝑜 𝐵)) | |
6 | mulpiord 9920 | . . . 4 ⊢ ((𝐵 ∈ N ∧ 𝐴 ∈ N) → (𝐵 ·N 𝐴) = (𝐵 ·𝑜 𝐴)) | |
7 | 6 | ancoms 468 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐵 ·N 𝐴) = (𝐵 ·𝑜 𝐴)) |
8 | 4, 5, 7 | 3eqtr4d 2805 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴)) |
9 | dmmulpi 9926 | . . 3 ⊢ dom ·N = (N × N) | |
10 | 9 | ndmovcom 6988 | . 2 ⊢ (¬ (𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴)) |
11 | 8, 10 | pm2.61i 176 | 1 ⊢ (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1632 ∈ wcel 2140 (class class class)co 6815 ωcom 7232 ·𝑜 comu 7729 Ncnpi 9879 ·N cmi 9881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-oadd 7735 df-omul 7736 df-ni 9907 df-mi 9909 |
This theorem is referenced by: enqbreq2 9955 enqer 9956 nqereu 9964 addcompq 9985 mulcompq 9987 adderpqlem 9989 mulerpqlem 9990 addassnq 9993 mulcanenq 9995 distrnq 9996 recmulnq 9999 ltsonq 10004 lterpq 10005 ltanq 10006 ltmnq 10007 ltexnq 10010 |
Copyright terms: Public domain | W3C validator |