![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcomi | Structured version Visualization version GIF version |
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
mulcomi | ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mulcom 10235 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | |
4 | 1, 2, 3 | mp2an 710 | 1 ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2140 (class class class)co 6815 ℂcc 10147 · cmul 10154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcom 10213 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: mulcomli 10260 divmul13i 10999 8th4div3 11465 numma2c 11772 nummul2c 11776 9t11e99 11884 9t11e99OLD 11885 binom2i 13189 fac3 13282 tanval2 15083 pockthi 15834 mod2xnegi 15998 decexp2 16002 decsplit1 16009 decsplit 16010 decsplit1OLD 16013 decsplitOLD 16014 83prm 16053 dvsincos 23964 sincosq4sgn 24474 ang180lem3 24762 mcubic 24795 cubic2 24796 log2ublem2 24895 log2ublem3 24896 log2ub 24897 basellem8 25035 ppiub 25150 chtub 25158 bposlem8 25237 2lgsoddprmlem2 25355 2lgsoddprmlem3d 25359 ax5seglem7 26036 ex-exp 27640 ex-ind-dvds 27651 ipdirilem 28015 siilem1 28037 bcseqi 28308 h1de2i 28743 dpmul10 29934 dpmul4 29953 signswch 30969 hgt750lem 31060 hgt750lem2 31061 problem4 31891 problem5 31892 quad3 31893 arearect 38322 areaquad 38323 wallispilem4 40807 dirkercncflem1 40842 fourierswlem 40969 257prm 42002 fmtno4prmfac 42013 5tcu2e40 42061 41prothprm 42065 tgoldbachlt 42233 tgoldbachltOLD 42239 zlmodzxzequap 42817 |
Copyright terms: Public domain | W3C validator |