MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcmpblnrlem Structured version   Visualization version   GIF version

Theorem mulcmpblnrlem 10092
Description: Lemma used in lemma showing compatibility of multiplication. (Contributed by NM, 4-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulcmpblnrlem (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))

Proof of Theorem mulcmpblnrlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6799 . . . . . . . . 9 ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) → ((𝐴 +P 𝐷) ·P 𝐹) = ((𝐵 +P 𝐶) ·P 𝐹))
2 distrpr 10051 . . . . . . . . . 10 (𝐹 ·P (𝐴 +P 𝐷)) = ((𝐹 ·P 𝐴) +P (𝐹 ·P 𝐷))
3 mulcompr 10046 . . . . . . . . . 10 ((𝐴 +P 𝐷) ·P 𝐹) = (𝐹 ·P (𝐴 +P 𝐷))
4 mulcompr 10046 . . . . . . . . . . 11 (𝐴 ·P 𝐹) = (𝐹 ·P 𝐴)
5 mulcompr 10046 . . . . . . . . . . 11 (𝐷 ·P 𝐹) = (𝐹 ·P 𝐷)
64, 5oveq12i 6804 . . . . . . . . . 10 ((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) = ((𝐹 ·P 𝐴) +P (𝐹 ·P 𝐷))
72, 3, 63eqtr4i 2802 . . . . . . . . 9 ((𝐴 +P 𝐷) ·P 𝐹) = ((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹))
8 distrpr 10051 . . . . . . . . . 10 (𝐹 ·P (𝐵 +P 𝐶)) = ((𝐹 ·P 𝐵) +P (𝐹 ·P 𝐶))
9 mulcompr 10046 . . . . . . . . . 10 ((𝐵 +P 𝐶) ·P 𝐹) = (𝐹 ·P (𝐵 +P 𝐶))
10 mulcompr 10046 . . . . . . . . . . 11 (𝐵 ·P 𝐹) = (𝐹 ·P 𝐵)
11 mulcompr 10046 . . . . . . . . . . 11 (𝐶 ·P 𝐹) = (𝐹 ·P 𝐶)
1210, 11oveq12i 6804 . . . . . . . . . 10 ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)) = ((𝐹 ·P 𝐵) +P (𝐹 ·P 𝐶))
138, 9, 123eqtr4i 2802 . . . . . . . . 9 ((𝐵 +P 𝐶) ·P 𝐹) = ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹))
141, 7, 133eqtr3g 2827 . . . . . . . 8 ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) → ((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) = ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)))
1514oveq1d 6807 . . . . . . 7 ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) → (((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = (((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)) +P (𝐶 ·P 𝑆)))
16 addasspr 10045 . . . . . . . 8 (((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐹) +P (𝐶 ·P 𝑆)))
17 oveq2 6800 . . . . . . . . . 10 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → (𝐶 ·P (𝐹 +P 𝑆)) = (𝐶 ·P (𝐺 +P 𝑅)))
18 distrpr 10051 . . . . . . . . . 10 (𝐶 ·P (𝐹 +P 𝑆)) = ((𝐶 ·P 𝐹) +P (𝐶 ·P 𝑆))
19 distrpr 10051 . . . . . . . . . 10 (𝐶 ·P (𝐺 +P 𝑅)) = ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅))
2017, 18, 193eqtr3g 2827 . . . . . . . . 9 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → ((𝐶 ·P 𝐹) +P (𝐶 ·P 𝑆)) = ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅)))
2120oveq2d 6808 . . . . . . . 8 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐹) +P (𝐶 ·P 𝑆))) = ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅))))
2216, 21syl5eq 2816 . . . . . . 7 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → (((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅))))
2315, 22sylan9eq 2824 . . . . . 6 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅))))
24 ovex 6822 . . . . . . 7 (𝐴 ·P 𝐹) ∈ V
25 ovex 6822 . . . . . . 7 (𝐷 ·P 𝐹) ∈ V
26 ovex 6822 . . . . . . 7 (𝐶 ·P 𝑆) ∈ V
27 addcompr 10044 . . . . . . 7 (𝑥 +P 𝑦) = (𝑦 +P 𝑥)
28 addasspr 10045 . . . . . . 7 ((𝑥 +P 𝑦) +P 𝑧) = (𝑥 +P (𝑦 +P 𝑧))
2924, 25, 26, 27, 28caov32 7007 . . . . . 6 (((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹))
30 ovex 6822 . . . . . . 7 (𝐵 ·P 𝐹) ∈ V
31 ovex 6822 . . . . . . 7 (𝐶 ·P 𝐺) ∈ V
32 ovex 6822 . . . . . . 7 (𝐶 ·P 𝑅) ∈ V
3330, 31, 32, 27, 28caov12 7008 . . . . . 6 ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅))) = ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))
3423, 29, 333eqtr3g 2827 . . . . 5 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹)) = ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))))
3534oveq2d 6808 . . . 4 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹))) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))))
36 oveq2 6800 . . . . . . . . . . 11 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → (𝐷 ·P (𝐹 +P 𝑆)) = (𝐷 ·P (𝐺 +P 𝑅)))
37 distrpr 10051 . . . . . . . . . . 11 (𝐷 ·P (𝐹 +P 𝑆)) = ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆))
38 distrpr 10051 . . . . . . . . . . 11 (𝐷 ·P (𝐺 +P 𝑅)) = ((𝐷 ·P 𝐺) +P (𝐷 ·P 𝑅))
3936, 37, 383eqtr3g 2827 . . . . . . . . . 10 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆)) = ((𝐷 ·P 𝐺) +P (𝐷 ·P 𝑅)))
4039oveq2d 6808 . . . . . . . . 9 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆))) = ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐺) +P (𝐷 ·P 𝑅))))
41 addasspr 10045 . . . . . . . . 9 (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)) +P (𝐷 ·P 𝑅)) = ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐺) +P (𝐷 ·P 𝑅)))
4240, 41syl6eqr 2822 . . . . . . . 8 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆))) = (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)) +P (𝐷 ·P 𝑅)))
43 oveq1 6799 . . . . . . . . . 10 ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) → ((𝐴 +P 𝐷) ·P 𝐺) = ((𝐵 +P 𝐶) ·P 𝐺))
44 distrpr 10051 . . . . . . . . . . 11 (𝐺 ·P (𝐴 +P 𝐷)) = ((𝐺 ·P 𝐴) +P (𝐺 ·P 𝐷))
45 mulcompr 10046 . . . . . . . . . . 11 ((𝐴 +P 𝐷) ·P 𝐺) = (𝐺 ·P (𝐴 +P 𝐷))
46 mulcompr 10046 . . . . . . . . . . . 12 (𝐴 ·P 𝐺) = (𝐺 ·P 𝐴)
47 mulcompr 10046 . . . . . . . . . . . 12 (𝐷 ·P 𝐺) = (𝐺 ·P 𝐷)
4846, 47oveq12i 6804 . . . . . . . . . . 11 ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)) = ((𝐺 ·P 𝐴) +P (𝐺 ·P 𝐷))
4944, 45, 483eqtr4i 2802 . . . . . . . . . 10 ((𝐴 +P 𝐷) ·P 𝐺) = ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺))
50 distrpr 10051 . . . . . . . . . . 11 (𝐺 ·P (𝐵 +P 𝐶)) = ((𝐺 ·P 𝐵) +P (𝐺 ·P 𝐶))
51 mulcompr 10046 . . . . . . . . . . 11 ((𝐵 +P 𝐶) ·P 𝐺) = (𝐺 ·P (𝐵 +P 𝐶))
52 mulcompr 10046 . . . . . . . . . . . 12 (𝐵 ·P 𝐺) = (𝐺 ·P 𝐵)
53 mulcompr 10046 . . . . . . . . . . . 12 (𝐶 ·P 𝐺) = (𝐺 ·P 𝐶)
5452, 53oveq12i 6804 . . . . . . . . . . 11 ((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)) = ((𝐺 ·P 𝐵) +P (𝐺 ·P 𝐶))
5550, 51, 543eqtr4i 2802 . . . . . . . . . 10 ((𝐵 +P 𝐶) ·P 𝐺) = ((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺))
5643, 49, 553eqtr3g 2827 . . . . . . . . 9 ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) → ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)) = ((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)))
5756oveq1d 6807 . . . . . . . 8 ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) → (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)) +P (𝐷 ·P 𝑅)) = (((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)) +P (𝐷 ·P 𝑅)))
5842, 57sylan9eqr 2826 . . . . . . 7 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆))) = (((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)) +P (𝐷 ·P 𝑅)))
59 ovex 6822 . . . . . . . 8 (𝐴 ·P 𝐺) ∈ V
60 ovex 6822 . . . . . . . 8 (𝐷 ·P 𝑆) ∈ V
6159, 25, 60, 27, 28caov12 7008 . . . . . . 7 ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆))) = ((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)))
62 ovex 6822 . . . . . . . 8 (𝐵 ·P 𝐺) ∈ V
63 ovex 6822 . . . . . . . 8 (𝐷 ·P 𝑅) ∈ V
6462, 31, 63, 27, 28caov32 7007 . . . . . . 7 (((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)) +P (𝐷 ·P 𝑅)) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (𝐶 ·P 𝐺))
6558, 61, 643eqtr3g 2827 . . . . . 6 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (𝐶 ·P 𝐺)))
6665oveq1d 6807 . . . . 5 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = ((((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (𝐶 ·P 𝐺)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))))
67 addasspr 10045 . . . . 5 ((((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (𝐶 ·P 𝐺)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))))
6866, 67syl6eq 2820 . . . 4 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))))
6935, 68eqtr4d 2807 . . 3 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹))) = (((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))))
70 ovex 6822 . . . 4 ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) ∈ V
71 ovex 6822 . . . 4 ((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) ∈ V
7270, 71, 25, 27, 28caov13 7010 . . 3 (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅))))
73 addasspr 10045 . . 3 (((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))))
7469, 72, 733eqtr3g 2827 . 2 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))))
7524, 26, 62, 27, 28, 63caov4 7011 . . 3 (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))
7675oveq2i 6803 . 2 ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))))
7759, 60, 30, 27, 28, 32caov42 7013 . . 3 (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))
7877oveq2i 6803 . 2 ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆))))
7974, 76, 783eqtr3g 2827 1 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  (class class class)co 6792   +P cpp 9884   ·P cmp 9885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-omul 7717  df-er 7895  df-ni 9895  df-pli 9896  df-mi 9897  df-lti 9898  df-plpq 9931  df-mpq 9932  df-ltpq 9933  df-enq 9934  df-nq 9935  df-erq 9936  df-plq 9937  df-mq 9938  df-1nq 9939  df-rq 9940  df-ltnq 9941  df-np 10004  df-plp 10006  df-mp 10007
This theorem is referenced by:  mulcmpblnr  10093
  Copyright terms: Public domain W3C validator