MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcmpblnr Structured version   Visualization version   GIF version

Theorem mulcmpblnr 10093
Description: Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulcmpblnr ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))⟩ ~R ⟨((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))⟩))

Proof of Theorem mulcmpblnr
StepHypRef Expression
1 mulcmpblnrlem 10092 . . 3 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
2 mulclpr 10043 . . . . . 6 ((𝐷P𝐹P) → (𝐷 ·P 𝐹) ∈ P)
32ad2ant2lr 734 . . . . 5 (((𝐶P𝐷P) ∧ (𝐹P𝐺P)) → (𝐷 ·P 𝐹) ∈ P)
43ad2ant2lr 734 . . . 4 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐷 ·P 𝐹) ∈ P)
5 simplll 750 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐴P)
6 simprll 756 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐹P)
7 mulclpr 10043 . . . . . . 7 ((𝐴P𝐹P) → (𝐴 ·P 𝐹) ∈ P)
85, 6, 7syl2anc 565 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐴 ·P 𝐹) ∈ P)
9 simpllr 752 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐵P)
10 simprlr 757 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐺P)
11 mulclpr 10043 . . . . . . 7 ((𝐵P𝐺P) → (𝐵 ·P 𝐺) ∈ P)
129, 10, 11syl2anc 565 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐵 ·P 𝐺) ∈ P)
13 addclpr 10041 . . . . . 6 (((𝐴 ·P 𝐹) ∈ P ∧ (𝐵 ·P 𝐺) ∈ P) → ((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) ∈ P)
148, 12, 13syl2anc 565 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) ∈ P)
15 simplrl 754 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐶P)
16 simprrr 759 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝑆P)
17 mulclpr 10043 . . . . . . 7 ((𝐶P𝑆P) → (𝐶 ·P 𝑆) ∈ P)
1815, 16, 17syl2anc 565 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐶 ·P 𝑆) ∈ P)
19 simplrr 755 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐷P)
20 simprrl 758 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝑅P)
21 mulclpr 10043 . . . . . . 7 ((𝐷P𝑅P) → (𝐷 ·P 𝑅) ∈ P)
2219, 20, 21syl2anc 565 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐷 ·P 𝑅) ∈ P)
23 addclpr 10041 . . . . . 6 (((𝐶 ·P 𝑆) ∈ P ∧ (𝐷 ·P 𝑅) ∈ P) → ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)) ∈ P)
2418, 22, 23syl2anc 565 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)) ∈ P)
25 addclpr 10041 . . . . 5 ((((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) ∈ P ∧ ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)) ∈ P) → (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) ∈ P)
2614, 24, 25syl2anc 565 . . . 4 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) ∈ P)
27 addcanpr 10069 . . . 4 (((𝐷 ·P 𝐹) ∈ P ∧ (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) ∈ P) → (((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))) → (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
284, 26, 27syl2anc 565 . . 3 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))) → (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
291, 28syl5 34 . 2 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
30 mulclpr 10043 . . . . 5 ((𝐴P𝐺P) → (𝐴 ·P 𝐺) ∈ P)
31 mulclpr 10043 . . . . 5 ((𝐵P𝐹P) → (𝐵 ·P 𝐹) ∈ P)
32 addclpr 10041 . . . . 5 (((𝐴 ·P 𝐺) ∈ P ∧ (𝐵 ·P 𝐹) ∈ P) → ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) ∈ P)
3330, 31, 32syl2an 575 . . . 4 (((𝐴P𝐺P) ∧ (𝐵P𝐹P)) → ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) ∈ P)
345, 10, 9, 6, 33syl22anc 1476 . . 3 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) ∈ P)
35 mulclpr 10043 . . . . 5 ((𝐶P𝑅P) → (𝐶 ·P 𝑅) ∈ P)
36 mulclpr 10043 . . . . 5 ((𝐷P𝑆P) → (𝐷 ·P 𝑆) ∈ P)
37 addclpr 10041 . . . . 5 (((𝐶 ·P 𝑅) ∈ P ∧ (𝐷 ·P 𝑆) ∈ P) → ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)) ∈ P)
3835, 36, 37syl2an 575 . . . 4 (((𝐶P𝑅P) ∧ (𝐷P𝑆P)) → ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)) ∈ P)
3915, 20, 19, 16, 38syl22anc 1476 . . 3 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)) ∈ P)
40 enrbreq 10086 . . 3 (((((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) ∈ P ∧ ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) ∈ P) ∧ (((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)) ∈ P ∧ ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)) ∈ P)) → (⟨((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))⟩ ~R ⟨((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))⟩ ↔ (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
4114, 34, 39, 24, 40syl22anc 1476 . 2 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (⟨((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))⟩ ~R ⟨((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))⟩ ↔ (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
4229, 41sylibrd 249 1 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))⟩ ~R ⟨((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  cop 4320   class class class wbr 4784  (class class class)co 6792  Pcnp 9882   +P cpp 9884   ·P cmp 9885   ~R cer 9887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-omul 7717  df-er 7895  df-ni 9895  df-pli 9896  df-mi 9897  df-lti 9898  df-plpq 9931  df-mpq 9932  df-ltpq 9933  df-enq 9934  df-nq 9935  df-erq 9936  df-plq 9937  df-mq 9938  df-1nq 9939  df-rq 9940  df-ltnq 9941  df-np 10004  df-plp 10006  df-mp 10007  df-ltp 10008  df-enr 10078
This theorem is referenced by:  mulsrmo  10096
  Copyright terms: Public domain W3C validator